首页> 外文期刊>International journal of communication networks and distributed systems >A novel gait recognition analysis system based on body sensor networks for patients with Parkinson's disease
【24h】

A novel gait recognition analysis system based on body sensor networks for patients with Parkinson's disease

机译:一种基于人体传感器网络的新型步态识别分析系统,用于帕金森氏病患者

获取原文
获取原文并翻译 | 示例

摘要

Gait analysis of human plays a significant role in maintaining the well-being of our mobility and healthcare, and it can be used for various e-healthcare systems for fast medical prognosis and diagnosis. In this paper, we have developed a novel body sensor network-based recognition system to identify the specific gait pattern of Parkinson's disease (PD). Firstly, a BSN with 16-nodes is used to acquire the gait information from the PD patients. Then, an algorithm is developed based on local linear embedding (LLE) to extract and recognise the gait features. Experiments demonstrate the effectiveness of proposed scheme. The results show that the proposed scheme has a recognition rate of about 95.57% for gait patterns of PD, which is higher than the conventional PCA feature extraction method. The proposed system can identify PD patients from normal people and by their gait map with high reliability and appears a promising aid in the diagnosis of the Parkinson's disease.
机译:人体步态分析在维持我们的机动性和医疗保健方面起着重要作用,可用于各种电子医疗系统以进行快速的医学预后和诊断。在本文中,我们开发了一种基于人体传感器网络的新型识别系统,以识别帕金森氏病(PD)的特定步态。首先,使用具有16个节点的BSN来从PD患者获取步态信息。然后,基于局部线性嵌入(LLE)开发了一种算法,以提取和识别步态特征。实验证明了该方案的有效性。结果表明,该方案对PD的步态模式的识别率约为95.57%,高于传统的PCA特征提取方法。拟议的系统可以从正常人群中识别出PD患者,并且其步态图具有很高的可靠性,对于帕金森氏病的诊断似乎很有帮助。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号