首页> 外文期刊>International Journal of Business Intelligence and Data Mining >Accurate recognition of ancient handwritten Tamil characters from palm prints for the Siddha medicine systems
【24h】

Accurate recognition of ancient handwritten Tamil characters from palm prints for the Siddha medicine systems

机译:从Siddha药品系统的掌印中准确识别出古代手写的泰米尔语字符

获取原文
获取原文并翻译 | 示例

摘要

The ancient Tamil characters recognition is the complex task because there is no sufficient training information is available. Various researchers attempted to perform accurate recognition of ancient Tamil characters. In our preceding work, hybrid multi-neural learning based prediction and recognition system (HMNL-PRS) is introduced for the prediction process which lacks from inaccurate recognition. In this proposed research work, this is overcome by proposing the Brahmi character prediction and conversion system (BC-PCS) methodology. Here, the modified graph based segmentation algorithm (MGSA) is used to segment the characters. And then the statistical and structural features are extracted based on which classification is done using hybridised support vector machine based fuzzy neural network. In the MATLAB simulation environment, the proposed research work is implemented and it is confirmed that the proposed research work direct to give the excellent result compared to the preceding research methodology in terms of recognition rate.
机译:泰米尔语古代字符识别是一项复杂的任务,因为没有足够的培训信息。许多研究人员试图对古代泰米尔语字符进行准确识别。在我们之前的工作中,引入了基于混合多神经学习的预测和识别系统(HMNL-PRS),用于缺乏识别不准确的预测过程。在这项拟议的研究工作中,通过提出梵音字符预测和转换系统(BC-PCS)方法来克服这一问题。在这里,使用改进的基于图的分割算法(MGSA)来分割字符。然后基于混合支持向量机的模糊神经网络,基于分类进行提取统计和结构特征。在MATLAB仿真环境中,所提出的研究工作得以实施,并且证实了所提出的研究工作在识别率方面与先前的研究方法相比可直接给出出色的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号