首页> 外文期刊>International journal of artificial intelligence and soft computing >Multiple-case outlier detection in least-squares regression model using Quantum-inspired Evolutionary Algorithm
【24h】

Multiple-case outlier detection in least-squares regression model using Quantum-inspired Evolutionary Algorithm

机译:量子启发式进化算法在最小二乘回归模型中进行多案例离群值检测

获取原文
获取原文并翻译 | 示例

摘要

In ordinary statistical methods, multiple outliers in least-squares regression model are detected sequentially one after another, where smearing and masking effects give misleading results. If the potential multiple outliers can be detected simultaneously, smearing and masking effects can be avoided. Such multiple-case outlier detection is of combinatorial nature and 2V - 1 sets of possible outliers need to be tested, where N is the number of data points. This exhaustive search is practically impossible. Like other combinatorial applications, evolutionary algorithms may play a vital role in multiple-case outlier detection problem. In this paper, we have used Quantum-inspired Evolutionary Algorithm (QEA) for multiple-case outlier detection in least-squares regression model. An information-criterion-based fitness function incorporating extra penalty for number of potential outliers has been used for identifying the most appropriate set of potential outliers. Experimental results with four data sets from statistical literature show that the QEA effectively detects the most appropriate set of outliers.
机译:在普通的统计方法中,一个接一个地依次检测多个最小二乘回归模型中的异常值,其中拖影和掩盖效果会产生误导性的结果。如果可以同时检测到多个潜在的异常值,则可以避免拖尾和掩盖效应。这种多案例离群值检测具有组合性,因此需要测试2V-1组可能的离群值,其中N是数据点的数量。这种详尽的搜索实际上是不可能的。像其他组合应用程序一样,进化算法可能在多案例离群值检测问题中起着至关重要的作用。在本文中,我们使用了量子启发式进化算法(QEA)在最小二乘回归模型中进行多案例离群值检测。基于信息准则的适应度函数结合了对潜在离群值数量的额外惩罚,已被用于识别最合适的潜在离群值。来自统计文献的四个数据集的实验结果表明,QEA有效地检测出最合适的离群值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号