首页> 外文期刊>International journal of artificial intelligence and soft computing >A chaotic neural network-based encryption algorithm for MPEG-2 encoded video signal
【24h】

A chaotic neural network-based encryption algorithm for MPEG-2 encoded video signal

机译:基于混沌神经网络的MPEG-2编码视频信号加密算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a cipher algorithm based on chaotic neural network (CNN) is used and integrated inside MPEG-2 video codec system to encrypt and decrypt the quantised coefficients and the motion vector data. This symmetric cipher algorithm was used to transform the plaintext into an unintelligible form under the control of the key. Chaos theory property and its effect on cipher algorithm have been investigated. Result shows that a minor-key modification of the receiver side will lead to unclear video scene with very low PSNR value of-18.363 dB. To reduce the required execution time for CNN cipher algorithm; a motion vector of video signal was selected for encryption and decryption instead of the quantised coefficients. Results indicate little execution time for motion vector encryption and decryption process of 5.498 and 5.381 seconds respectively, but the entropy value decreases to 7.645 as compared to the entropy value of the quantised coefficients encryption. The whole system model can control bit rate and video quality depending on the available bandwidth channel. It can be shown from results that by increasing video quality value the PSNR and the compressed bit rate values will increase also, but with penalty of compression ratio decreasing.
机译:本文采用基于混沌神经网络(CNN)的密码算法并将其集成在MPEG-2视频编解码器系统中,对量化系数和运动矢量数据进行加密和解密。该对称密码算法用于在密钥的控制下将纯文本转换为难以理解的形式。研究了混沌理论的性质及其对密码算法的影响。结果表明,对接收器端进行小调修改会导致视频场景不清晰,PSNR值非常低,为18.363 dB。减少CNN密码算法所需的执行时间;选择视频信号的运动向量而不是量化系数来进行加密和解密。结果表明,运动矢量加密和解密过程的执行时间分别为5.498秒和5.381秒,但是与量化系数加密的熵值相比,熵值减小到7.645。整个系统模型可以根据可用带宽信道来控制比特率和视频质量。从结果可以看出,通过增加视频质量值,PSNR和压缩的比特率值也将增加,但是压缩率的损失减小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号