首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >GRAPH-BASED GENERATION OF A META-LEARNING SEARCH SPACE
【24h】

GRAPH-BASED GENERATION OF A META-LEARNING SEARCH SPACE

机译:基于图的元学习搜索空间的生成

获取原文
获取原文并翻译 | 示例

摘要

Meta-learning is becoming more and more important in current and future research concentrated around broadly defined data mining or computational intelligence. It can solve problems that cannot be solved by any single, specialized algorithm. The overall characteristic of each meta-learning algorithm mainly depends on two elements: the learning machine space and the supervisory procedure. The former restricts the space of all possible learning machines to a subspace to be browsed by a meta-learning algorithm. The latter determines the order of selected learning machines with a module responsible for machine complexity evaluation, organizes tests and performs analysis of results. In this article we present a framework for meta-learning search that can be seen as a method of sophisticated description and evaluation of functional search spaces of learning machine configurations used in meta-learning. Machine spaces will be defined by specially defined graphs where vertices are specialized machine configuration generators. By using such graphs the learning machine space may be modeled in a much more flexible way, depending on the characteristics of the problem considered and a priori knowledge. The presented method of search space description is used together with an advanced algorithm which orders test tasks according to their complexities.
机译:在当前和未来的研究中,元学习正变得越来越重要,这些研究集中在广泛定义的数据挖掘或计算智能上。它可以解决任何单一的专用算法都无法解决的问题。每个元学习算法的总体特征主要取决于两个要素:学习机空间和监督程序。前者将所有可能的学习机的空间限制为要由元学习算法浏览的子空间。后者通过负责机器复杂性评估的模块确定所选学习机器的顺序,组织测试并执行结果分析。在本文中,我们提供了一种用于元学习搜索的框架,该框架可以看作是一种复杂描述和评估元学习中使用的学习机配置的功能搜索空间的方法。机器空间将由专门定义的图形定义,其中顶点是专门的机器配置生成器。通过使用这样的图形,可以根据所考虑的问题的特征和先验知识,以更加灵活的方式对学习机器空间进行建模。所提出的搜索空间描述方法与高级算法结合使用,该算法根据测试任务的复杂性对其进行排序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号