首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >NONLINEAR SYSTEM IDENTIFICATION WITH A REAL-CODED GENETIC ALGORITHM (RCGA)
【24h】

NONLINEAR SYSTEM IDENTIFICATION WITH A REAL-CODED GENETIC ALGORITHM (RCGA)

机译:用实编码遗传算法(RCGA)进行非线性系统识别

获取原文
获取原文并翻译 | 示例

摘要

This paper is devoted to the blind identification problem of a special class of nonlinear systems, namely, Volterra models, using a real-coded genetic algorithm (RCGA). The model input is assumed to be a stationary Gaussian sequence or an independent identically distributed (i.i.d.) process. The order of the Volterra series is assumed to be known. The fitness function is defined as the difference between the calculated cumulant values and analytical equations in which the kernels and the input variances are considered. Simulation results and a comparative study for the proposed method and some existing techniques are given. They clearly show that the RCGA identification method performs better in terms of precision, time of convergence and simplicity of programming.
机译:本文致力于使用实编码遗传算法(RCGA)解决一类特殊的非线性系统即Volterra模型的盲辨识问题。假设模型输入是固定的高斯序列或独立的均匀分布(i.i.d.)过程。假定Volterra级数的阶数已知。适应度函数定义为计算的累积值与分析方程之间的差异,其中考虑了内核和输入方差。给出了仿真结果,并对该方法与现有技术进行了比较研究。他们清楚地表明,RCGA识别方法在精度,收敛时间和编程简便性方面表现更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号