首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >MACHINE-LEARNING IN OPTIMIZATION OF EXPENSIVE BLACK-BOX FUNCTIONS
【24h】

MACHINE-LEARNING IN OPTIMIZATION OF EXPENSIVE BLACK-BOX FUNCTIONS

机译:昂贵的黑匣子功能优化中的机器学习

获取原文
获取原文并翻译 | 示例

摘要

Modern engineering design optimization often uses computer simulations to evaluate candidate designs. For some of these designs the simulation can fail for an unknown reason, which in turn may hamper the optimization process. To handle such scenarios more effectively, this study proposes the integration of classifiers, borrowed from the domain of machine learning, into the optimization process. Several implementations of the proposed approach are described. An extensive set of numerical experiments shows that the proposed approach improves search effectiveness.
机译:现代工程设计优化通常使用计算机模拟来评估候选设计。对于其中的某些设计,仿真可能会由于未知原因而失败,从而可能会阻碍优化过程。为了更有效地处理这种情况,本研究提出了从机器学习领域借用的分类器集成到优化过程中的方法。描述了所提出方法的几种实现。大量的数值实验表明,该方法提高了搜索效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号