首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >EFFICIENT DECISION TREES FOR MULTI-CLASS SUPPORT VECTOR MACHINES USING ENTROPY AND GENERALIZATION ERROR ESTIMATION
【24h】

EFFICIENT DECISION TREES FOR MULTI-CLASS SUPPORT VECTOR MACHINES USING ENTROPY AND GENERALIZATION ERROR ESTIMATION

机译:基于熵和广义误差估计的多类支持向量机有效决策树

获取原文
获取原文并翻译 | 示例

摘要

We propose new methods for support vector machines using a tree architecture for multi-class classification. In each node of the tree, we select an appropriate binary classifier, using entropy and generalization error estimation, then group the examples into positive and negative classes based on the selected classifier, and train a new classifier for use in the classification phase. The proposed methods can work in time complexity between O(log(2) N) and O(N), where N is the number of classes. We compare the performance of our methods with traditional techniques on the UCI machine learning repository using 10-fold cross-validation. The experimental results show that the methods are very useful for problems that need fast classification time or those with a large number of classes, since the proposed methods run much faster than the traditional techniques but still provide comparable accuracy.
机译:我们提出了使用树结构进行多类分类的支持向量机的新方法。在树的每个节点中,我们使用熵和泛化误差估计来选择适当的二进制分类器,然后根据所选分类器将示例分为正分类和负分类,并训练一个新分类器以用于分类阶段。所提出的方法可以在O(log(2)N)和O(N)之间的时间复杂度上工作,其中N是类的数目。我们使用10倍交叉验证在UCI机器学习存储库上比较了我们的方法与传统技术的性能。实验结果表明,该方法对于需要快速分类的问题或具有大量分类的问题非常有用,因为所提出的方法比传统技术运行速度快得多,但仍可提供相当的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号