首页> 外文期刊>International journal of ambient computing and intelligence >A Novel Hybridization of Expectation- Maximization and K-Means Algorithms for Better Clustering Performance
【24h】

A Novel Hybridization of Expectation- Maximization and K-Means Algorithms for Better Clustering Performance

机译:期望最大化和K均值算法的新型混合算法,可实现更好的聚类性能

获取原文
获取原文并翻译 | 示例

摘要

>Expectation Maximization (EM) is a widely employed mixture model-based data clustering algorithm and produces exceptionally good results. However, many researchers reported that the EM algorithm requires huge computational efforts than other clustering algorithms. This paper presents an algorithm for the novel hybridization of EM and K-Means techniques for achieving better clustering performance (NovHbEMKM). This algorithm first performs K-Means and then using these results it performs EM and K-Means in the alternative iterations. Along with the NovHbEMKM, experiments are carried out with the algorithms for EM, EM using the results of K-Means and Cluster package of Purdue University. Experiments are carried out with datasets from UCI ML repository and synthetic datasets. Execution time, Clustering Fitness and Sum of Squared Errors (SSE) are computed as performance criteria. In all the experiments the proposed NovHbEMKM algorithm is taking less execution time by producing results with higher clustering fitness and lesser SSE than other algorithms including the Cluster package.
机译: >期望最大化(EM )是一种广泛使用的基于混合模型的数据聚类算法,可产生异常好的结果。但是,许多研究人员报告说,EM算法比其他聚类算法需要大量的计算工作。本文提出了一种用于实现EM和K-Means技术新颖杂交的算法,以实现更好的聚类性能(NovHbEMKM)。该算法首先执行K均值,然后使用这些结果在替代迭代中执行EM和K均值。与NovHbEMKM一起,使用普渡大学的K-Means和Cluster包的结果,针对EM,EM算法进行了实验。使用来自UCI ML资料库的数据集和综合数据集进行了实验。执行时间,聚类适应度和平方误差总和(SSE)被计算为性能标准。在所有实验中,与包括Cluster程序包在内的其他算法相比,拟议的NovHbEMKM算法通过产生具有更高的聚类适应度和更少的SSE的结果而花费更少的执行时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号