首页> 外文期刊>International Journal of Adaptive Control and Signal Processing >Convergence theory for multi-input discrete-time iterative learning control with Coulomb friction, continuous outputs, and input bounds
【24h】

Convergence theory for multi-input discrete-time iterative learning control with Coulomb friction, continuous outputs, and input bounds

机译:具有库仑摩擦,连续输出和输入界限的多输入离散时间迭代学习控制的收敛理论

获取原文
获取原文并翻译 | 示例

摘要

x1 In this paper we consider the problem of discrete-time iterative learning control (ILC) for position trajectory tracking of multiple-input, multiple-output systems with Coulomb friction, bounds on the inputs, and equal static and sliding coefficients of friction. We present an ILC controller and a proof of convergence to zero tracking error, provided the associated learning gain matrices are scalar-scaled with a sufficiently small positive scalar. We also show that non-diagonal learning gain matrices satisfying the same prescribed conditions do not lead to the same convergence property. To the best of our knowledge, for problems with Coulomb friction, this paper represents a first convergence theory for the discrete-time ILC problem with multiple-bounded-inputs and multiple-outputs; previous work presented theory only for the single-input, single-output problem.
机译:x1在本文中,我们考虑离散时间迭代学习控制(ILC)的问题,该问题用于具有库仑摩擦力,输入范围以及相等的静态和滑动摩擦系数的多输入多输出系统的位置轨迹跟踪。我们提供了一个ILC控制器和收敛到零跟踪误差的证明,条件是相关学习增益矩阵的标量缩放应具有足够小的正标量。我们还表明,满足相同规定条件的非对角学习增益矩阵不会导致相同的收敛性。据我们所知,对于库仑摩擦问题,本文提出了具有多个有界输入和多个输出的离散时间ILC问题的第一个收敛理论。先前的工作仅针对单输入单输出问题提出了理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号