首页> 外文期刊>International Applied Mechanics >VARIATIONAL FINITE-DIFFERENCE METHODS IN LINEAR AND NONLINEAR PROBLEMS OF THE DEFORMATION OF METALLIC AND COMPOSITE SHELLS (REVIEW)
【24h】

VARIATIONAL FINITE-DIFFERENCE METHODS IN LINEAR AND NONLINEAR PROBLEMS OF THE DEFORMATION OF METALLIC AND COMPOSITE SHELLS (REVIEW)

机译:金属和复合材料壳变形的线性和非线性问题的变分差分方法(综述)

获取原文

摘要

Variational finite-difference methods of solving linear and nonlinear problems for thin and nonthin shells (plates) made of homogeneous isotropic (metallic) and orthotropic (composite) materials are analyzed and their classification principles and structure are discussed. Scalar and vector variational finite-difference methods that implement the Kirchhoff-Love hypotheses analytically or algorithmic-ally using Lagrange multipliers are outlined. The Timoshenko hypotheses are implemented in a traditional way, i.e., analytically. The stress-strain state of metallic and composite shells of complex geometry is analyzed numerically. The numerical results are presented in the form of graphs and tables and used to assess the efficiency of using the variational finite-difference methods to solve linear and nonlinear problems of the statics of shells (plates).
机译:分析了均质各向同性(金属)和正交异性(复合)材料制成的薄壳和薄壳(板)的线性和非线性问题的变分有限差分方法,并讨论了其分类原理和结构。概述了使用Lagrange乘法器以解析或算法方式实现Kirchhoff-Love假设的标量和矢量变分有限差分方法。季莫申科假说以传统方式,即分析方式实施。数值分析了复杂几何形状的金属壳和复合壳的应力-应变状态。数值结果以图表和表格的形式呈现,并用于评估使用变分有限差分法解决壳体(板)静力学线性和非线性问题的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号