首页> 外文期刊>Interfaces and free boundaries >A geometrical approach to front propagation problems in bounded domains with Neumann-type boundary conditions
【24h】

A geometrical approach to front propagation problems in bounded domains with Neumann-type boundary conditions

机译:具Neumann型边界条件的有界区域中前传播问题的几何方法

获取原文
获取原文并翻译 | 示例

摘要

We are interested in the asymptotic behavior of the solutions of scaled reaction-diffusion equations in bounded domains, associated with Neumann type boundary conditions, and more precisely in cases when such behavior is described in terms of moving interfaces. A typical example is the case of the Allen-Cahn equation associated with an oblique derivative boundary condition, where the generation of a front moving by mean curvature with an angle boundary condition is shown. In order to establish such results rigourously, we modify and adapt the "geometrical approach" introduced by P. E. Souganidis and the first author for solving problems in R~N we provide a new definition of weak solution for the global-in-time motion of fronts with curvature-dependent velocities and with angle boundary conditions, which turns out to be equivalent to the level-set approach when there is no fattening phenomenon. We use this definition to obtain the asymptotic behavior of the solutions of a large class of reaction-diffusion equations, including the case of quasilinear ones and (x, t)-dependent reaction terms, but also with any, possibly nonlinear, Neumann boundary conditions.
机译:我们对与Neumann型边界条件相关的有界域中的比例反应扩散方程解的渐近行为感兴趣,更确切地说,当这种行为用移动界面来描述时更是如此。一个典型示例是与倾斜导数边界条件相关联的Allen-Cahn方程的情况,其中显示了通过具有角度边界条件的平均曲率移动的前沿的生成。为了严格地建立这样的结果,我们修改并改编了PE Souganidis和第一作者解决R〜N问题的“几何方法”,我们为前沿的全局实时运动提供了弱解的新定义。取决于曲率的速度和角度边界条件,当没有发胖现象时,这等效于水平设定方法。我们使用该定义来获得一类大的反应扩散方程解的渐近行为,包括拟线性方程和与(x,t)相关的反应项的情况,以及任何可能的非线性诺伊曼边界条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号