首页> 外文期刊>Interfaces and free boundaries >Two-dimensional steady supersonic exothermically reacting Euler flows with strong contact discontinuity over a Lipschitz wall
【24h】

Two-dimensional steady supersonic exothermically reacting Euler flows with strong contact discontinuity over a Lipschitz wall

机译:Lipschitz壁上二维二维超音速稳定放热反应的Euler流动以及强烈的接触不连续性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we establish the global existence of supersonic entropy solutions with a strong contact discontinuity over a Lipschitz wall governed by the two-dimensional steady exothermically reacting Euler equations, when the total variation of both the initial data and slope of the Lipschitz wall is sufficiently small. Local and global estimates are developed and a modified Glimm-type functional is carefully designed. Next the validation of the quasi-one-dimensional approximation in the domain bounded by the wall and the strong contact discontinuity is rigorous justified by proving that the difference between the average of weak solution and the solution of quasi-one-dimensional system can be bounded by the square of the total variation of both the initial data and slope of the Lipschitz wall.
机译:在本文中,当Lipschitz壁的初始数据和斜率的总变化为2时,我们建立了由二维稳态放热反应Euler方程控制的Lipschitz壁上具有强接触不连续性的超音速熵解的整体存在。足够小。开发本地和全局估计,并精心设计改进的Glimm型功能。接下来,通过证明弱解的平均值与拟一维系统的解之间的差可以有界,从而严格证明了在以壁为边界和强接触不连续性域中的拟一维近似的有效性。由Lipschitz墙的初始数据和斜率的总变化的平方得出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号