首页> 外文期刊>Interacting with Computers >Semi-automatic photo annotation strategies using event based clustering and clothing based person recognition
【24h】

Semi-automatic photo annotation strategies using event based clustering and clothing based person recognition

机译:使用基于事件的聚类和基于服装的人识别的半自动照片注释策略

获取原文
获取原文并翻译 | 示例

摘要

Managing a large number of digital photos is a challenging task for casual users. Personal photos often don't have rich metadata, or additional information associated with them. However, available metadata can play a crucial role in managing photos. Labeling the semantic content of photos (i.e., annotating them), can increase the amount of metadata and facilitate efficient management. However, manual annotation is tedious and labor intensive while automatic metadata extraction techniques often generate inaccurate and irrelevant results. This paper describes a semi-automatic annotation strategy that takes advantage of human and computer strengths. The semi-automatic approach enables users to efficiently update automatically obtained metadata interactively and incrementally. Even though automatically identified metadata are compromised with inaccurate recognition errors, the process of correcting inaccurate information can be faster and easier than manually adding new metadata from scratch. In this paper, we introduce two photo clustering algorithms for generating meaningful photo groups: (1) Hierarchical event clustering; and (2) Clothing based person recognition, which assumes that people who wear similar clothing and appear in photos taken in one day are very likely to be the same person. To explore our semi-automatic strategies, we designed and implemented a prototype called SAPHARI (Semi-Automatic PHoto Annotation and Recognition Interface). The prototype provides an annotation framework which focuses on making bulk annotations on automatically identified photo groups. The prototype automatically creates photo clusters based on events, people, and file metadata so that users can easily bulk annotation photos. We performed a series of user studies to investigate the effectiveness and usability of the semi-automatic annotation techniques when applied to personal photo collections. The results show that users were able to make annotations significantly faster with event clustering using SAPHARI. We also found that users clearly preferred the semi-automatic approaches.
机译:对于休闲用户而言,管理大量数码照片是一项艰巨的任务。个人照片通常没有丰富的元数据或与之相关的其他信息。但是,可用的元数据可以在管理照片中发挥关键作用。标记照片的语义内容(即,对它们进行注释)可以增加元数据的数量并促进有效的管理。然而,手动注释是繁琐且费力的,而自动元数据提取技术通常会产生不准确且不相关的结果。本文介绍了一种利用人和计算机优势的半自动注释策略。半自动方法使用户能够以交互方式和增量方式有效地更新自动获取的元数据。尽管自动识别的元数据因不正确的识别错误而受到损害,但与从头开始手动添加新的元数据相比,更正不准确信息的过程可以更快,更容易。在本文中,我们介绍了两种用于生成有意义的照片组的照片聚类算法:(1)分层事件聚类; (2)基于服装的人识别,即假设穿着相似服装并出现在一天中拍摄的照片的人很可能是同一个人。为了探索我们的半自动策略,我们设计并实现了一个名为SAPHARI(半自动PHoto注释和识别接口)的原型。该原型提供了一个注释框架,该框架专注于对自动识别的照片组进行批量注释。该原型根据事件,人物和文件元数据自动创建照片群集,以便用户可以轻松地批量注释照片。我们进行了一系列用户研究,以研究将半自动注释技术应用于个人照片集时的有效性和可用性。结果表明,通过使用SAPHARI进行事件聚类,用户能够显着更快地进行注释。我们还发现,用户显然更喜欢半自动方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号