首页> 外文期刊>Intelligent Transportation Systems, IEEE Transactions on >Low-Dimensional Models for Compressed Sensing and Prediction of Large-Scale Traffic Data
【24h】

Low-Dimensional Models for Compressed Sensing and Prediction of Large-Scale Traffic Data

机译:大规模交通数据压缩感知和预测的低维模型

获取原文
获取原文并翻译 | 示例

摘要

Advanced sensing and surveillance technologies often collect traffic information with high temporal and spatial resolutions. The volume of the collected data severely limits the scalability of online traffic operations. To overcome this issue, we propose a low-dimensional network representation where only a subset of road segments is explicitly monitored. Traffic information for the subset of roads is then used to estimate and predict conditions of the entire network. Numerical results show that such approach provides 10 times faster prediction at a loss of performance of 3% and 1% for 5- and 30-min prediction horizons, respectively.
机译:先进的传感和监视技术通常会以高时空分辨率收集交通信息。收集的数据量严重限制了在线交通运营的可扩展性。为克服此问题,我们提出了一种低维网络表示形式,其中仅明确监视路段的一个子集。然后,将道路子集的交通信息用于估计和预测整个网络的状况。数值结果表明,对于5分钟和30分钟的预测范围,这种方法的预测速度提高了10倍,而性能损失分别为3%和1%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号