首页> 外文期刊>IEEE Transactions on Intelligent Transportation Systems >Development of Dynamic Platoon Dispersion Models for Predictive Traffic Signal Control
【24h】

Development of Dynamic Platoon Dispersion Models for Predictive Traffic Signal Control

机译:用于预测交通信号控制的动态排扩散模型的开发

获取原文
获取原文并翻译 | 示例

摘要

As the development of traffic detection technology, recent research is directed to a new generation of signal control systems supported by new traffic data. One of these directions is dynamic predictive control by incorporating short-term prediction capability. This paper focuses on investigating dynamic platoon dispersion models which could capture the variability of traffic flow in a cross-sectional traffic detection environment. The dynamic models are applied to predict the evolution of traffic flow, and further used to produce signal timing plans that account not only for the current state of the system but also for the expected short-term changes in traffic flows. We investigate factors affecting model accuracy, including time-zone length, position of upstream traffic detection equipment, road section length, traffic volume, turning percentages, and computation time. The impact of these factors on the model's performance is illustrated through a simulation analysis, and the computation performance of models is discussed. The results show that both the dynamic speed-truncated normal distribution model and dynamic Robertson model with dynamics outperform their respective static versions, and that they can be further applied for dynamic control.
机译:随着交通检测技术的发展,最近的研究针对由新交通数据支持的新一代信号控制系统。这些方向之一是通过合并短期预测功能来实现动态预测控制。本文着重研究动态行列离散模型,该模型可以捕获横断面交通检测环境中交通流量的变化。动态模型用于预测交通流量的演变,并进一步用于生成信号时序计划,该计划不仅考虑系统的当前状态,而且考虑交通流量的预期短期变化。我们调查影响模型准确性的因素,包括时区长度,上游交通检测设备的位置,路段长度,交通量,转弯百分比和计算时间。通过仿真分析说明了这些因素对模型性能的影响,并讨论了模型的计算性能。结果表明,动态速度截断的正态分布模型和具有动力学的动态罗伯逊模型均优于其各自的静态版本,并且它们可以进一步应用于动态控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号