首页> 外文期刊>Intelligent Transportation Systems, IEEE Transactions on >License Plate Recognition Data-Based Traffic Volume Estimation Using Collaborative Tensor Decomposition
【24h】

License Plate Recognition Data-Based Traffic Volume Estimation Using Collaborative Tensor Decomposition

机译:基于协同张量分解的车牌识别数据流量估计

获取原文
获取原文并翻译 | 示例

摘要

The sparse problem of traffic volume data is unavoidable due to budget limits and device malfunctions in traffic systems. To address this problem, we propose a license plate recognition (LPR) data and collaborative tensor decomposition (CTD)-based method to estimate the sparse traffic volume data. The method works in two phases: first, a vehicle-time matrix is created based on LPR data, and non-negative matrix factorization is employed to analyze vehicle types; second, a road traffic volume tensor and the corresponding matrix of vehicle types are created, and people's check-in data and point of interest information are introduced to complement the sparse tensor with CTD. Experimental results show that our method outperforms traditional estimation methods, and it can estimate traffic volume data even when the missing rate is high.
机译:由于预算限制和交通系统中的设备故障,交通量数据稀疏问题是不可避免的。为了解决这个问题,我们提出了一种基于车牌识别(LPR)数据和基于协作张量分解(CTD)的方法来估计稀疏交通量数据。该方法分两个阶段工作:首先,基于LPR数据创建车辆时间矩阵,然后使用非负矩阵分解分析车辆类型。其次,创建道路交通量张量和相应的车辆类型矩阵,并引入人们的签到数据和兴趣点信息,以用CTD补充稀疏张量。实验结果表明,该方法优于传统的估计方法,即使丢失率很高,也可以估计流量数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号