首页> 外文期刊>Intelligent Transportation Systems, IEEE Transactions on >Fast and Scalable Big Data Trajectory Clustering for Understanding Urban Mobility
【24h】

Fast and Scalable Big Data Trajectory Clustering for Understanding Urban Mobility

机译:快速且可扩展的大数据轨迹聚类,以了解城市交通

获取原文
获取原文并翻译 | 示例

摘要

Clustering of large-scale vehicle trajectories is an important aspect for understanding urban traffic patterns, particularly for optimizing public transport routes and frequencies and improving the decisions made by authorities. Existing trajectory clustering schemes are not well suited to large numbers of trajectories in dense city road networks due to the difficulty in finding a representative distance measure between trajectories that can scale to very large datasets. In this paper, we propose a novel Dijkstra-based dynamic time warping distance measure, trajDTW between two trajectories, which is suitable for large numbers of overlapping trajectories in a dense road network as found in major cities around the world. We also propose a novel fast-clusiVAT algorithm that can suggest the number of clusters in a trajectory dataset and identify and visualize the trajectories belonging to each cluster. We conduct experiments on a large-scale taxi trajectory dataset consisting of 3.28 million trajectories obtained from the GPS traces of 15 061 taxis within Singapore over a period of one month. Our analysis finds 13 trajectory clusters spanning the major expressways of Singapore, each of which can be further divided into two sub-clusters based on the travel direction. For each cluster, we provide a time-based distribution of trajectories to yield insights into how urban mobility patterns change with the time of day. We compare the trajectory clusters obtained using our approach with those obtained using popular general and trajectory specific clustering frameworks: DBSCAN, OPTICS, NETSCAN, and NEAT. We demonstrate that the clusters obtained using our novel fast-clusiVAT framework are better than those obtained using other clustering schemes, evaluated based on two internal cluster validity measures: Dunn's and Silhouette indices. Moreover, our fast-clusiVAT algorithm achieves significant speedup over a comparable approach without loss of cluster quality.
机译:大型车辆轨迹的聚类是理解城市交通模式的重要方面,特别是对于优化公共交通路线和频率以及改善主管部门的决策而言。现有的轨迹聚类方案由于难以找到可缩放到非常大的数据集的轨迹之间的代表性距离度量而非常不适合密集城市道路网络中的大量轨迹。在本文中,我们提出了一种新颖的基于Dijkstra的动态时间规整距离度量,即两条轨迹之间的trajDTW,适用于在世界主要城市中发现的密集道路网络中的大量重叠轨迹。我们还提出了一种新颖的fast-clusiVAT算法,该算法可以建议轨迹数据集中的簇数,并识别和可视化属于每个簇的轨迹。我们在一个大型滑行轨迹数据集上进行了实验,该数据集由一个月内从新加坡境内15061辆出租车的GPS轨迹中获得的328万条轨迹组成。我们的分析发现了跨越新加坡主要高速公路的13个轨迹簇,每个轨迹簇可以根据行进方向进一步分为两个子簇。对于每个集群,我们提供基于时间的轨迹分布,以深入了解城市交通模式如何随时间变化。我们将使用我们的方法获得的轨迹聚类与使用流行的通用和特定于轨迹的聚类框架(DBSCAN,OPTICS,NETSCAN和NEAT)获得的轨迹聚类进行比较。我们证明,使用我们的新型fast-clusiVAT框架获得的聚类比使用其他聚类方案获得的聚类更好,这些聚类基于两个内部聚类有效性度量:邓恩氏和Silhouette指数进行评估。而且,我们的fast-clusiVAT算法在不损失群集质量的情况下,在可比方法上实现了显着的加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号