首页> 外文期刊>Intelligent Transportation Systems, IEEE Transactions on >PCNN: Deep Convolutional Networks for Short-Term Traffic Congestion Prediction
【24h】

PCNN: Deep Convolutional Networks for Short-Term Traffic Congestion Prediction

机译:PCNN:用于短期流量拥塞预测的深度卷积网络

获取原文
获取原文并翻译 | 示例

摘要

Traffic problems have seriously affected people's life quality and urban development, and forecasting short-term traffic congestion is of great importance to both individuals and governments. However, understanding and modeling the traffic conditions can be extremely difficult, and our observations from real traffic data reveal that: 1) similar traffic congestion patterns exist in the neighboring time slots and on consecutive workdays and 2) the levels of traffic congestion have clear multiscale properties. To capture these characteristics, we propose a novel method named PCNN, which is based on a deep convolutional neural network, modeling periodic traffic data for short-term traffic congestion prediction. PCNN has two pivotal procedures: time series folding and multi-grained learning. It first temporally folds the time series and constructs a 2-D matrix as the network input, such that both the real-time traffic conditions and past traffic patterns are well considered; then, with a series of convolutions over the input matrix, it is able to model the local temporal dependency and multiscale traffic patterns. In particular, the global trend of congestion can be addressed at the macroscale, whereas more details and variations of the congestion can be captured at the microscale. Experimental results on a real-world urban traffic data set confirm that folding time series data into a 2-D matrix is effective and PCNN outperforms the baselines significantly for the task of short-term congestion prediction.
机译:交通问题已严重影响着人们的生活质量和城市发展,因此预测短期交通拥堵对个人和政府都至关重要。但是,了解和模拟交通状况可能非常困难,我们从实际交通数据中观察到的结果表明:1)相似的交通拥堵模式存在于相邻的时隙和连续的工作日中; 2)交通拥堵程度具有明显的多尺度属性。为了捕获这些特征,我们提出了一种名为PCNN的新方法,该方法基于深度卷积神经网络,为周期性的交通数据建模,以进行短期交通拥堵预测。 PCNN具有两个关键过程:时间序列折叠和多粒度学习。它首先在时间上折叠时间序列,并构建一个二维矩阵作为网络输入,这样就可以充分考虑实时交通状况和过去的交通模式;然后,通过对输入矩阵进行一系列卷积,就可以对本地时间依赖性和多尺度流量模式进行建模。特别是,可以从宏观角度解决全球交通拥堵的趋势,而可以从微观角度捕捉交通拥堵的更多细节和变化。在现实世界中的城市交通数据集上的实验结果证实,将时间序列数据折叠成二维矩阵是有效的,并且对于短期拥堵预测而言,PCNN明显优于基线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号