首页> 外文期刊>Intelligent data analysis >A novel approach to fully representing the diversity in conditional dependencies for learning Bayesian network classifier
【24h】

A novel approach to fully representing the diversity in conditional dependencies for learning Bayesian network classifier

机译:一种充分代表学习贝叶斯网络分类器的条件依赖性多样性的新方法

获取原文
获取原文并翻译 | 示例

摘要

Bayesian network classifiers (BNCs) have proved their effectiveness and efficiency in the supervised learning framework. Numerous variations of conditional independence assumption have been proposed to address the issue of NP-hard structure learning of BNC. However, researchers focus on identifying conditional dependence rather than conditional independence, and information-theoretic criteria cannot identify the diversity in conditional (in)dependencies for different instances. In this paper, the maximum correlation criterion and minimum dependence criterion are introduced to sort attributes and identify conditional independencies, respectively. The heuristic search strategy is applied to find possible global solution for achieving the trade-off between significant dependency relationships and independence assumption. Our extensive experimental evaluation on widely used benchmark data sets reveals that the proposed algorithm achieves competitive classification performance compared to state-of-the-art single model learners (e.g., TAN, KDB, KNN and SVM) and ensemble learners (e.g., ATAN and AODE).
机译:贝叶斯网络分类器(BNC)已证明其在监督学习框架中的有效性和效率。已经提出了有条件独立假设的许多变化来解决BNC的NP-Hard结构学习问题。然而,研究人员专注于识别条件依赖性而不是条件独立性,信息 - 理论标准不能识别不同实例的条件(IN)依赖性的多样性。在本文中,引入了最大相关标准和最小依赖标准来分别对属性进行排序和识别条件独立性。启发式搜索策略应用于找到可能的全局解决方案,以实现显着依赖关系与独立假设之间的权衡。我们对广泛使用的基准数据集的广泛实验评估揭示了所提出的算法与最先进的单一模型学习者(例如,TAN,KDB,KNN和SVM)和集合学习者(例如,atan和阳极)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号