首页> 外文期刊>Intelligent data analysis >Storyline extraction from news articles with dynamic dependency
【24h】

Storyline extraction from news articles with dynamic dependency

机译:具有动态依赖的新闻文章的故事情节提取

获取原文
获取原文并翻译 | 示例

摘要

Storyline generation aims to produce a concise summary of related events unfolding over time from a collection of news articles. It can be cast into an evolutionary clustering problem by separating news articles into different epochs. Existing unsupervised approaches to storyline generation are typically based on probabilistic graphical models. They assume that the storyline distribution at the current epoch depends on the weighted combination of storyline distributions in the latest previous M epochs. The evolutionary parameters of such long-term dependency are typically set by a fixed exponential decay function to capture the intuition that events in more recent epochs have stronger influence to the storyline generation in the current epoch. However, we argue that the amount of relevant historical contextual information should vary for different storylines. Therefore, in this paper, we propose a new Dynamic Dependency Storyline Extraction Model ((DSEM)-S-2) in which the dependencies among events in different epochs but belonging to the same storyline are dynamically updated to track the time-varying distributions of storylines over time. The proposed model has been evaluated on three news corpora and the experimental results show that it outperforms the state-of-the-art approaches and is able to capture the dependency on historical contextual information dynamically.
机译:故事情节一代旨在从一系列新闻文章中产生随着时间的推移而产生的相关事件的简明摘要。它可以通过将新闻文章分成不同的时期来施放进化聚类问题。对故事情节生成的现有无监督方法通常基于概率图形模型。他们假设当前epoch的故事情节分布取决于最新之前的M个时期的故事情节分布的加权组合。这种长期依赖性的进化参数通常由固定指数衰减函数设定,以捕获最近时期的事件对当前时期中的故事情节生成的影响更强。但是,我们认为相关历史上下文信息的数量应该因不同的故事情节而有所不同。因此,在本文中,我们提出了一种新的动态依赖性故事情节提取模型((DSEM)-S-2),其中不同时期的事件中的依赖性,但属于相同的故事情节是动态更新的,以跟踪时变分布故事表随着时间的推移。拟议的模型已经在三个新闻语料库中进行了评估,实验结果表明它优于最先进的方法,并且能够动态地捕捉历史上下文信息的依赖。

著录项

  • 来源
    《Intelligent data analysis》 |2020年第1期|183-197|共15页
  • 作者单位

    Southeast Univ Sch Comp Sci & Engn Key Lab Comp Network & Informat Integrat Minist Educ Nanjing Jiangsu Peoples R China;

    Southeast Univ Sch Comp Sci & Engn Key Lab Comp Network & Informat Integrat Minist Educ Nanjing Jiangsu Peoples R China;

    Univ Warwick Dept Comp Sci Warwick England;

    DiDi AI Labs Beijing Beijing Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Storyline extraction; dynamic dependency; topic model; event extraction;

    机译:故事情节提取;动态依赖;主题模型;事件提取;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号