首页> 外文期刊>Intelligent data analysis >Multi-label learning vector quantization for semi-supervised classification
【24h】

Multi-label learning vector quantization for semi-supervised classification

机译:半监督分类的多标签学习矢量量化

获取原文
获取原文并翻译 | 示例

摘要

In the context of expensive and time-consuming acquisition of reliably labeled data, how to utilize the unlabeled instances that can potentially improve the classification accuracy becomes an attractive problem with significant importance in practice. Semi-supervised classification that fills the gap between supervised learning and unsupervised learning is designed to take advantage of the unlabeled data in regular supervised learning procedure for classification tasks. In this paper we proposed a self-learning framework, that firstly pre-learns a classification model using the labeled data, then makes the prediction of unlabeled instances in the form of soft class labels, and re-learned a model based on the enlarged training data. Two multi-label Learning Vector Quantization Neural Networks (LVQ-NNs) are proposed, namely multi-label online LVQ-NN (mLVQo) and multi-label batch LVQ-NN (mLVQb), to work with the soft labels of training instances. The experiments demonstrate that the semi-supervised models using multi-label LVQ-NN as the base classifier can produce better generalization accuracy than the supervised counterpart.
机译:在昂贵且耗时的可靠标记数据的获取的背景下,如何利用可能提高分类精度的未标记实例,成为实践中具有重要意义的有吸引力的问题。半监督分类填补了监督学习和无监督学习之间的差距,旨在利用定期监督学习程序的未标记数据进行分类任务。在本文中,我们提出了一种自学框架,首先使用标记的数据预先学习分类模型,然后以软类标签的形式预测未标记的实例,并根据放大的培训重新学习模型数据。提出了两个多标签学习矢量量化神经网络(LVQ-NNS),即多标签在线LVQ-NN(MLVQO)和多标签批量LVQ-NN(MLVQB),与训练实例的软标签一起使用。实验表明,使用多标签LVQ-NN的半监控模型作为基本分类器可以产生比监督对应物更好的泛化精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号