首页> 外文期刊>Intelligent data analysis >Improved financial time series forecasting by combining Support Vector Machines with self-organizing feature map
【24h】

Improved financial time series forecasting by combining Support Vector Machines with self-organizing feature map

机译:通过将支持向量机与自组织特征图相结合来改进财务时间序列预测

获取原文
获取原文并翻译 | 示例

摘要

A two-stage neural network architecture constructed by combining Support Vector Machines (SVMs) with self- organizing feature map (SOM) is proposed for financial time series forecasting. In the first stage, SOM is used as a clustering algorithm to partition the whole input space into several disjoint regions. A tree-structured architecture is adopted in the partition to avoid the problem of predetermining the number of partitioned regions. Then, in the second stage, multiple SVMs, also called SVM experts, that bet fit each partitioned region are constructed by finding the most appropriate kernel function and the optimal learning parameters of SVMs. The Santa Fe exchange rate and five real futures contracts are used in the experiment. It is shown that the proposed method achieves both significantly higher prediction performance and faster convergence speed in comparison with a single SVM model.
机译:提出了一种将支持向量机(SVM)与自组织特征图(SOM)相结合构造的两阶段神经网络架构,用于财务时间序列预测。在第一阶段,将SOM用作聚类算法,将整个输入空间划分为几个不相交的区域。在分区中采用树形结构,以避免预先确定分区区域的数量的问题。然后,在第二阶段,通过找到最合适的内核功能和SVM的最佳学习参数,构建适合每个分区的多个SVM(也称为SVM专家)。实验中使用了圣达菲汇率和五个实际期货合约。结果表明,与单个支持向量机模型相比,该方法具有更高的预测性能和更快的收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号