首页> 外文期刊>Intelligent data analysis >Expertdiscovery System Application For The Hierarchical Analysis Of Eukaryotic Transcription Regulatory Regions Based On Dna Codes Of Transcription
【24h】

Expertdiscovery System Application For The Hierarchical Analysis Of Eukaryotic Transcription Regulatory Regions Based On Dna Codes Of Transcription

机译:基于转录DNA密码子的真核转录调控区层次分析专家发现系统应用

获取原文
获取原文并翻译 | 示例

摘要

We developed Relational Data Mining approach which allows to overcome essential limitations of the Data Mining and Knowledge Discovery techniques. In the paper the approach was implemented to adapt the original 'Discovery' system to the computational biology needs. The objects under consideration, eukaryotic transcription regulatory regions, are characterized by the great variety of context physicochemical and conformational DNA features. The currently available tools aimed at the regulatory regions analysis are sensitive to specific DNA features; therefore they produce poor results on complex heterogeneous data. Development of a method integrating the results of different recognition programs is a challenging task. We have developed the 'ExpertDiscovery' system, which discovers the hierarchically complicating set of complex signals based on different elementary signals. It provides a powerful tool to construct a model of regulatory region generalizing the results of different programs. Besides, the system is an independent tool for analysis. In the paper we demonstrate that 'ExpertDiscovery' outperforms the position weight matrix in the case when the elementary signals introduced to the system are nucleotides at specific positions. The system is able to discover biologically significant, simple to complex models of potential transcription factor binding sites for regulatory regions of interferon-inducible genes.
机译:我们开发了关系数据挖掘方法,该方法可以克服数据挖掘和知识发现技术的本质限制。在本文中,实施了该方法以使原始的“发现”系统适应计算生物学的需求。所考虑的对象,真核转录调控区,具有多种背景物化和构象DNA特征。目前用于调控区域分析的工具对特定的DNA特征敏感。因此,它们在复杂的异构数据上产生的效果不佳。整合不同识别程序结果的方法的开发是一项艰巨的任务。我们已经开发了“ ExpertDiscovery”系统,该系统可以根据不同的基本信号来发现复杂信号的分层复杂集合。它提供了一个强大的工具,可用于构建监管区域模型,以概括不同计划的结果。此外,该系统是一个独立的分析工具。在本文中,我们证明了当引入系统的基本信号是特定位置的核苷酸时,“ ExpertDiscovery”优于位置权重矩阵。该系统能够发现潜在的转录因子结合位点的生物学上重要的,简单到复杂的模型,可用于干扰素诱导型基因的调控区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号