首页> 外文期刊>Intelligent data analysis >Robust learning intrusion detection for attacks on wireless networks
【24h】

Robust learning intrusion detection for attacks on wireless networks

机译:针对无线网络攻击的强大学习入侵检测

获取原文
获取原文并翻译 | 示例

摘要

We address the problem of evaluating the robustness of machine learning based detectors for deployment in real life networks. To this end, we employ Genetic Programming for evolving classifiers and Artificial Neural Networks as our machine learning paradigms under three different Denial-of-Service attacks at the Data Link layer (De-authentication, Authentication and Association attacks). We investigate their cross-platform robustness and cross-attack robustness. Cross-platform robustness is the ability to seamlessly port an Intrusion Detector trained on one network to another network with little or no change and without a drop in performance. Cross-attack robustness is the ability of a detector trained on one attack type to detect a different but similar attack on which it has not been trained. Our results show that the potential of a machine learning based detector can be significantly enhanced or limited by the representation of the training data for the learning algorithms.
机译:我们解决了评估基于机器学习的检测器在现实网络中部署的鲁棒性问题。为此,在数据链路层的三种不同的拒绝服务攻击(取消身份验证,身份验证和关联攻击)下,我们将遗传规划用于进化的分类器和人工神经网络作为我们的机器学习范例。我们研究了它们的跨平台鲁棒性和跨攻击鲁棒性。跨平台的鲁棒性是将在一个网络上训练有素的入侵检测器无缝移植到另一个网络的能力,而几乎没有变化或没有变化,并且性能没有下降。交叉攻击的鲁棒性是指在一种攻击类型上经过训练的检测器检测未经过训练的不同但相似的攻击的能力。我们的结果表明,通过学习算法的训练数据表示,可以显着增强或限制基于机器学习的检测器的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号