首页> 外文期刊>Intelligent data analysis >Structure/attribute computation of similarities between nodes of a RDF graph with application to linked data clustering
【24h】

Structure/attribute computation of similarities between nodes of a RDF graph with application to linked data clustering

机译:RDF图的节点之间相似度的结构/属性计算及其在链接数据聚类中的应用

获取原文
获取原文并翻译 | 示例

摘要

Similarity estimation between interconnected objects appears in many real-world applications and many domain-related measures have been proposed. This work proposes a new perspective on specifying the similarity between resources in linked data, and in general for vertices of a directed and attributed graph. More precisely, it is based on the combination of structural properties of a graph and attribute/value of its vertices. We compute similarities between any pair of nodes using an extension of Jaccard measure, which has the nice property of increasing when the number of matching attribute/value of those resources increase. Highly similar vertices are treated as one single node in the next step which is called a CGraph. Nodes of a CGraph represent highly similar resources in the first step and links between resources are generalized to links between clusters. We propose an extension of the structural algorithm, i.e. CRank to merge highly similar nodes in the next step. The suggested model is evaluated in a clustering procedure on our standard dataset where class label of each resource is estimated and compared with the ground-truth class label. Experimental results show that our model outperforms other clustering algorithms in terms of precision and recall rate.
机译:互连对象之间的相似性估计出现在许多实际应用中,并且已经提出了许多与域相关的措施。这项工作为指定链接数据中资源之间的相似性提出了一个新的观点,并且通常针对有向图和属性图的顶点。更准确地说,它基于图形的结构属性及其顶点的属性/值的组合。我们使用扩展的Jaccard度量来计算任意一对节点之间的相似度,当这些资源的匹配属性/值的数量增加时,它具有增加属性。高度相似的顶点在下一步中被视为一个单个节点,称为CGraph。第一步,CGraph的节点表示高度相似的资源,资源之间的链接被概括为集群之间的链接。我们建议对结构算法进行扩展,即CRank,以在下一步中合并高度相似的节点。在我们的标准数据集的聚类过程中,对建议的模型进行了评估,在该数据集上估计了每种资源的类别标签,并将其与真实的类别标签进行比较。实验结果表明,该模型在准确性和召回率方面优于其他聚类算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号