首页> 外文期刊>Intelligent data analysis >A novel page ranking algorithm based on triadic closure and hyperlink-induced topic search
【24h】

A novel page ranking algorithm based on triadic closure and hyperlink-induced topic search

机译:基于三元闭合和超链接诱导主题搜索的新颖页面排名算法

获取原文
获取原文并翻译 | 示例

摘要

The Hyperlink-Induced Topic Search (HITS) algorithm developed by Jon Kleinberg made use of the link structure of the web pages on the Web in order to discover and rank web pages being relevant to a particular topic. However it only took account of the hyperlink structure, while completely excluded contents of web pages, and it ignored the fact that degrees of the importance of many hyperlinks on the Web may be different. In this paper, to overcome the topic drifts, we proposed a novel page ranking algorithm combining the hyperlink with the triadic closure theory by considering fully the Vector Space Model (VSM) and the TrustRank algorithm. The method firstly computed the relevance between two randomly arbitrary web pages based on web page topic similarity and common reference degree. Then, by using that model as a point of reference, a new adjacency matrix was constructed to iteratively calculate the authority and hub values of web pages. Next, we calculated the trust-degree for each web page in the basic set by the trust-score algorithm. Finally, the score for each web page is computed by linearly merging the authority and the trust-degree. In our experiments, we used five classic HITS-based algorithms to compare with our proposed page ranking algorithm-PCTHITS (Web Page Topic Similarity, Common Reference Degree, Trust-degree) algorithm. The experimental results demonstrated that our proposed algorithm outperform the other four classic improved algorithms and HITS algorithm.
机译:乔恩·克莱因伯格(Jon Kleinberg)开发的超链接诱导主题搜索(HITS)算法利用了Web上网页的链接结构,以便发现和排序与特定主题相关的网页。但是,它仅考虑了超链接的结构,而完全排除了网页的内容,并且忽略了以下事实:Web上许多超链接的重要性程度可能不同。在本文中,为了克服主题漂移问题,我们通过充分考虑向量空间模型(VSM)和TrustRank算法,提出了一种将超链接与三重闭锁理论相结合的新颖页面排名算法。该方法首先基于网页主题相似度和共同参考度来计算两个随机任意网页之间的相关性。然后,通过使用该模型作为参考点,构造了一个新的邻接矩阵,以迭代方式计算网页的权限和中心值。接下来,我们通过信任得分算法计算了基本集中每个网页的信任度。最后,通过线性合并权限和信任度来计算每个网页的分数。在我们的实验中,我们使用了五种基于HITS的经典算法与我们提出的页面排名算法PCTHITS(网页主题相似度,公共参考度,信任度)算法进行比较。实验结果表明,本文提出的算法优于其他四种经典的改进算法和HITS算法。

著录项

  • 来源
    《Intelligent data analysis》 |2015年第5期|1131-1149|共19页
  • 作者单位

    Xihua Univ, Sch Comp & Software Engn, Chengdu 610039, Sichuan, Peoples R China;

    Xihua Univ, Sch Comp & Software Engn, Chengdu 610039, Sichuan, Peoples R China;

    Xihua Univ, Sch Comp & Software Engn, Chengdu 610039, Sichuan, Peoples R China;

    Xihua Univ, Sch Comp & Software Engn, Chengdu 610039, Sichuan, Peoples R China;

    Xihua Univ, Sch Comp & Software Engn, Chengdu 610039, Sichuan, Peoples R China;

    Xihua Univ, Sch Comp & Software Engn, Chengdu 610039, Sichuan, Peoples R China;

    Xihua Univ, Sch Comp & Software Engn, Chengdu 610039, Sichuan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    HITS algorithm; triadic closure; trust-degree; topic similarity; common reference; random walks;

    机译:HITS算法;三重封闭;信任度;主题相似度;通用参考;随机游动;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号