首页> 外文期刊>Intelligent data analysis >Cascading randomized weighted majority: A new online ensemble learning algorithm
【24h】

Cascading randomized weighted majority: A new online ensemble learning algorithm

机译:级联随机加权多数:一种新的在线集成学习算法

获取原文
获取原文并翻译 | 示例

摘要

With the increasing volume of data, the best approach for learning from this data is to exploit an online learning algorithm. Online ensemble methods take advantage of an ensemble of classifiers to predict labels of data. Prediction with expert advice is a well-studied problem in the online ensemble learning literature. The weighted majority and the randomized weighted majority (RWM) algorithms are two well-known solutions to this problem, aiming to converge to the best expert. Since among some expert, the best one does not necessarily have the minimum error in all regions of data space, defining specific regions and converging to the best expert in each of these regions will lead to a better result. In this paper, we aim to resolve this problem by proposing a novel online ensemble algorithm to the problem of prediction with expert advice. We propose a cascading version of RWM to achieve not only better experimental results but also a better error bound for sufficiently large datasets.
机译:随着数据量的增加,从此数据中学习的最佳方法是利用在线学习算法。在线集成方法利用分类器的集成来预测数据标签。在网上总体学习文献中,用专家意见进行预测是一个经过充分研究的问题。加权多数和随机加权多数(RWM)算法是针对此问题的两个众所周知的解决方案,旨在收敛于最佳专家。由于在某个专家中,最好的专家不一定在数据空间的所有区域中具有最小的错误,因此,定义特定区域并在这些区域中的每个区域中聚集到最佳专家将导致更好的结果。在本文中,我们旨在通过提出一种新颖的在线集成算法来解决该问题,该算法具有专家建议。我们提出了级联的RWM,不仅可以实现更好的实验结果,还可以为足够大的数据集提供更好的误差范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号