首页> 外文期刊>International journal of machine learning and cybernetics >A novel online ensemble approach to handle concept drifting data streams: diversified dynamic weighted majority
【24h】

A novel online ensemble approach to handle concept drifting data streams: diversified dynamic weighted majority

机译:一种新颖的在线集成方法来处理概念漂移数据流:多样化的动态加权多数

获取原文
获取原文并翻译 | 示例

摘要

We present an online ensemble approach, diversified dynamic weighted majority (DDWM) to classify new data instances which have varying conceptual distributions. Our approach maintains two sets of weighted ensembles that differentiate in their level of diversity. An expert in either of the ensembles is updated or removed as per its classification accuracy and a new expert is added based on the final global prediction of the algorithm and the global prediction of the ensemble for any data instance. Experimental evaluation using various artificial and real-world datasets proves that DDWM provides very high accuracy in classifying new data instances, irrespective of size of dataset, type of drift or presence of noise. We compare DDWM with the other learners in terms of new performance metrics such as kappa statistic, model cost, and the evaluation time and memory requirements. Our approach proved to be highly resource effective achieving very high accuracies even in a resource constrained environment.
机译:我们提出了一种在线集成方法,即动态加权多数(DDWM)来对具有不同概念分布的新数据实例进行分类。我们的方法保持两组加权合奏,它们的多样性水平有所不同。根据其分类精度更新或删除专家组中的任何一个,并根据算法的最终全局预测和任何数据实例的整体全局预测添加新专家。使用各种人工和现实数据集进行的实验评估证明,DDWM在分类新数据实例方面提供了非常高的准确性,而与数据集的大小,漂移类型或噪声的存在无关。我们在新的性能指标(例如kappa统计量,模型成本以及评估时间和内存要求)方面将DDWM与其他学习者进行了比较。事实证明,即使在资源有限的环境中,我们的方法仍具有很高的资源利用率,可以实现很高的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号