首页> 外文期刊>Intelligent automation and soft computing >REACTIVE POWER OPTIMIZATION THROUGH EVOLUTIONARY TECHNIQUES: A COMPARATIVE STUDY OF THE GA, DE AND PSO ALGORITHMS
【24h】

REACTIVE POWER OPTIMIZATION THROUGH EVOLUTIONARY TECHNIQUES: A COMPARATIVE STUDY OF THE GA, DE AND PSO ALGORITHMS

机译:通过进化技术优化无功功率:GA,DE和PSO算法的比较研究

获取原文
获取原文并翻译 | 示例

摘要

The reactive power planning and dispatch problems have been solved using Genetic algorithm (GA), Differential evolution (DE) and Particle Swarm Optimization (PSO) technique in order to have a comparative study on the performance of these algorithms. It has been found that Differential evolution performs best followed by the Particle swarm optimization. Both DE and PSO can perform well even with very small population size whereas GA needs a reasonably large population size. Thus, the computational efforts needed by both DE and PSO are less than that of GA.
机译:使用遗传算法(GA),差分进化(DE)和粒子群优化(PSO)技术解决了无功计划和调度问题,以便对这些算法的性能进行比较研究。已经发现,差分进化在粒子群优化之后表现最佳。即使人口非常少,DE和PSO都可以很好地执行,而GA需要相当大的人口。因此,DE和PSO所需的计算工作量均少于GA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号