首页> 外文期刊>Intelligent automation and soft computing >A Fuzzy-neural Network Approach To Multisensor Integration For Obstacle Avoidance Of A Mobile Robot
【24h】

A Fuzzy-neural Network Approach To Multisensor Integration For Obstacle Avoidance Of A Mobile Robot

机译:机器人避障的多传感器集成的模糊神经网络方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel fuzzy-neural network approach is proposed for obstacle avoidance of mobile robots through multisensor fusion. The proposed model is constituted with a precondition network and a conclusion network. In the precondition network, each rule matches the preconditions of fuzzy rules. The conclusion network generates conclusions of fuzzy rules. The total output is the weighted addition and the weight represents the applicability of each rule. The proposed model not only has the ability to handle vague information through the fuzzy logic but also has the ability to learn through the neural network. Multisensor integration based on the proposed fuzzy-neural networks is applied to obstacle avoidance of mobile robots, which adopt multiple ultrasonic sensors to detect the distance and direction of obstacles. The mobile robot can recognize the obstacles, the types of environment and generate collision-free motion by the fuzzy-neural network model. Simulation results show that the proposed model is capable of recognizing the environment and avoiding the obstacles and generating a collision-free path from the start point to the end point.
机译:本文提出了一种新颖的模糊神经网络方法,用于通过多传感器融合避免移动机器人的障碍。提出的模型由前提网络和结论网络组成。在前提条件网络中,每个规则都与模糊规则的前提条件匹配。结论网络生成模糊规则的结论。总输出为加权加法,权重代表每个规则的适用性。所提出的模型不仅具有通过模糊逻辑处理模糊信息的能力,而且还具有通过神经网络学习的能力。将基于模糊神经网络的多传感器集成技术应用于移动机器人避障,该机器人采用多个超声波传感器来检测障碍物的距离和方向。通过模糊神经网络模型,移动机器人可以识别障碍物,环境类型并生成无碰撞运动。仿真结果表明,所提出的模型能够识别环境,避开障碍物,并生成从起点到终点的无碰撞路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号