首页> 外文期刊>Intelligent automation and soft computing >ENDOSCOPY VIDEO SUMMARIZATION BASED ON MULTI-MODAL DESCRIPTORS AND POSSIBILISTIC UNSUPERVISED LEARNING AND FEATURE SUBSET WEIGHTING
【24h】

ENDOSCOPY VIDEO SUMMARIZATION BASED ON MULTI-MODAL DESCRIPTORS AND POSSIBILISTIC UNSUPERVISED LEARNING AND FEATURE SUBSET WEIGHTING

机译:基于多模态描述符和可能的无监督学习和特征子集加权的内窥镜视频汇总

获取原文
获取原文并翻译 | 示例

摘要

The spread of capsule endoscopy systems has proved to be inherently constrained by the tedious diagnosis process when the physician has to review thousands of endoscopy video frames in order to detect pathology symptoms. In this paper, we propose a novel endoscopy video summarization approach based on possibilistic clustering and feature weighting algorithm. The algorithm generates possibilistic membership that represents the degree of typicality of the video frames, and that is used to identify and discard noise frames. The robustness to irrelevant features is achieved by learning optimal relevance weight for each feature subset within each cluster. We extend the proposed algorithm to find the optimal number of clusters in an unsupervised and efficient way by exploiting some properties of the possibilistic membership function. The system demonstrated promising performance in extensive testing on real-world datasets associated with the difficult problem of endoscopy video summarization. The endoscopy video collection was acquired on four patients at different geographic locations. It includes more than 90k video frames.
机译:当医生必须检查数千个内窥镜视频帧以检测病理症状时,单调的诊断过程已固有地限制了胶囊内窥镜系统的普及。在本文中,我们提出了一种基于可能性聚类和特征加权算法的内窥镜视频摘要方法。该算法生成表示视频帧典型程度的可能性隶属度,并用于识别和丢弃噪声帧。通过学习每个聚类中每个特征子集的最佳相关权重,可以实现对不相关特征的鲁棒性。我们通过利用可能性隶属函数的某些性质,对提出的算法进行扩展,以一种无监督且有效的方式找到最佳的聚类数。该系统在对与内窥镜视频汇总困难问题相关的真实数据集进行的广泛测试中表现出令人鼓舞的性能。内窥镜检查视频采集来自四名不同地理位置的患者。它包括超过9万个视频帧。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号