首页> 外文期刊>Intelligent automation and soft computing >SMART REAL TIME ADAPTIVE GAUSSIAN FILTER SUPERVISED NEURAL NETWORK FOR EFFICIENT GRAY SCALE AND RGB IMAGE DE-NOISING
【24h】

SMART REAL TIME ADAPTIVE GAUSSIAN FILTER SUPERVISED NEURAL NETWORK FOR EFFICIENT GRAY SCALE AND RGB IMAGE DE-NOISING

机译:用于实时灰度和RGB图像去噪的智能实时自适应高斯滤波器监督神经网络

获取原文
获取原文并翻译 | 示例

摘要

Digital imaging may be corrupted by random variations in intensities due to external interferences or noise. Some common models of noise are similar to the real one such as: Salt and pepper, impulse, and Gaussian noise. These distortions may alter the perception or the interpretation of the processed data. They can also cause problems for post processing tasks such as patterns recognition, object detection and medical decisions. In this paper, a new and efficient method for grayscale and RGB image de-noising is presented. Neural networks are used to transform static Gaussian low-pass filter to dynamic smart filter that targets and eliminates different kinds and densities of noise in the image. Simulation results prove that the proposed method is able to filter efficiently corrupted data and reduce noise as well as preserve edges and forms. Applied on grayscale and color image, it overcomes the constraints of the static nature of the Gaussian core. The filtering strength varies with respect to the image characteristics. A comparison with the static filter is conducted to highlight the improvement allowed by this method.
机译:由于外部干扰或噪声,强度随机变化会损坏数字成像。一些常见的噪声模型类似于真实的噪声模型,例如:盐和胡椒,冲量和高斯噪声。这些失真可能会改变对已处理数据的感知或解释。它们还会给后处理任务带来问题,例如模式识别,目标检测和医疗决策。本文提出了一种新的高效的灰度和RGB图像降噪方法。神经网络用于将静态高斯低通滤波器转换为动态智能滤波器,从而针对并消除图像中不同种类和密度的噪声。仿真结果表明,该方法能够有效过滤损坏的数据,减少噪声,并保留边缘和形状。应用于灰度和彩色图像,它克服了高斯核静态性质的限制。滤波强度相对于图像特性而变化。与静态过滤器进行比较以突出此方法允许的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号