首页> 外文期刊>Intelligent automation and soft computing >Mining Users Interest Navigation Patterns Using Improved Ant Colony Optimization
【24h】

Mining Users Interest Navigation Patterns Using Improved Ant Colony Optimization

机译:使用改进的蚁群算法挖掘用户的兴趣导航模式

获取原文
获取原文并翻译 | 示例

摘要

Web log mining is mainly to acquire users' interest navigation patterns from web logs and has been the subject of the web personalization research. In this paper, we define a new concept "interest pheromone" and present a group users' navigation paths model. Then we propose a simple algorithm based on improved Ant Colony Optimization (ACO) to mine users' dynamic interest. In this algorithm, three factors relative browsing time, access frequency and operation time are considered to measure the "interest pheromone", which better reflects users' real interest. Finally, we conduct the simulation experiments to contrast the accuracy of navigation patterns mined by our approach and existing approaches. Experimental results illustrate that the proposed paradigm can truly capture users' browsing preference effectively.
机译:Web日志挖掘主要是从Web日志中获取用户的兴趣导航模式,已经成为Web个性化研究的主题。在本文中,我们定义了一个新概念“兴趣信息素”,并提出了一个组用户的导航路径模型。然后我们提出了一种基于改进蚁群算法的简单算法来挖掘用户的动态兴趣。该算法综合考虑了浏览时间,访问频率和操作时间三个因素来衡量“兴趣信息素”,更好地反映了用户的真实兴趣。最后,我们进行了仿真实验,以对比通过我们的方法和现有方法获得的导航模式的准确性。实验结果表明,所提出的范式可以真正有效地捕获用户的浏览偏好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号