首页> 外文期刊>Intelligent automation and soft computing >The SLAM Algorithm for Multiple Robots based on Parameter estimation
【24h】

The SLAM Algorithm for Multiple Robots based on Parameter estimation

机译:基于参数估计的多机器人SLAM算法

获取原文
获取原文并翻译 | 示例

摘要

With the increasing number of feature points of a map, the dimension of systematic observation is added gradually, which leads to the deviation of the volume points from the desired trajectory and significant errors on the state estimation, An Iterative Squared-Root Cubature Kalman Filter (ISR-CKF) algorithm proposed is aimed at improving the SR-CKF algorithm on the simultaneous localization and mapping (SLAM). By introducing the method of iterative updating, the sample points are re-determined by the estimated value and the square root factor, which keeps the distortion small in the highly nonlinear environment and improves the precision further. A robust tracking Square Root Cubature Kalman Filter algorithm (STF-SRCKF-SLAM) is proposed to solve the problem of reduced accuracy in the condition of state change on the SLAM. The algorithm is predicted according to the kinematic model and observation model of the mobile robot at first, and then the algorithm updates itself by spreading the square root of the error covariance matrix directly, which greatly reduces the computational complexity. At the same time, the time-varying fading factor is introduced in the process of forecasting and updating, and the corresponding weight of the data is adjusted in real time to improve the accuracy of multi-robot localization. The results of simulation shows that the algorithm can improve the accuracy of multi-robot pose effectively.
机译:随着地图上特征点数量的增加,系统观测的维数逐渐增加,这导致体积点与所需轨迹的偏离以及状态估计的重大误差。迭代平方根Cubature卡尔曼滤波器(提出的ISR-CKF算法旨在改进同时定位与映射(SLAM)上的SR-CKF算法。通过引入迭代更新的方法,通过估计值和平方根因子重新确定采样点,从而在高度非线性的环境中保持较小的失真,并进一步提高了精度。提出了一种鲁棒的跟踪平方根容器卡尔曼滤波算法(STF-SRCKF-SLAM),以解决SLAM状态变化时精度降低的问题。首先根据移动机器人的运动学模型和观测模型对算法进行预测,然后通过直接扩展误差协方差矩阵的平方根进行更新,从而大大降低了计算复杂度。同时,在预测和更新过程中引入了随时间变化的衰落因子,并对数据的相应权重进行了实时调整,以提高多机器人定位的准确性。仿真结果表明,该算法可以有效提高多机器人姿态的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号