首页> 外文期刊>Intelligent automation and soft computing >An Apriori-Based Learning Scheme towards Intelligent Mining of Association Rules for Geological Big Data
【24h】

An Apriori-Based Learning Scheme towards Intelligent Mining of Association Rules for Geological Big Data

机译:基于APRIORI的地质大数据智能挖掘学习计划

获取原文
获取原文并翻译 | 示例

摘要

The past decade has witnessed the rapid advancements of geological data analysis techniques, which facilitates the development of modern agricultural systems. However, there remains some technical challenges that should be addressed to fully exploit the potential of those geological big data, while gathering massive amounts of data in this application field. Generally, a good representation of correlation in the geological big data is critical to making full use of multi-source geological data, while discovering the relationship in data and mining mineral prediction information. Then, in this article, a scheme is proposed towards intelligent mining of association rules for geological big data. Firstly, we achieve word embedding via word2vec technique in geological data. Secondly, through the use of self-organizing map (SOM) and K-means algorithm, the word embedding data is clustered to serve the purpose of improving the performance of analysis and mining. On the basis of it, the unsupervised Apriori learning algorithm is developed to analyze and mine these association rules in data. Finally, some experiments are conducted to verify that our scheme can effectively mine the potential relationships and rules in the mineral deposit data.
机译:过去十年目睹了地质数据分析技术的快速进步,促进了现代农业系统的发展。但是,仍然存在一些技术挑战,应该解决,以充分利用这些地质大数据的潜力,同时收集本申请领域的大量数据。通常,地质大数据中的相关性的良好表示对于充分利用多源地质数据至关重要,同时发现数据和挖掘矿物预测信息中的关系。然后,在本文中,提出了一种方案,旨在朝着地质大数据的关联规则进行智能挖掘。首先,我们在地质数据中通过Word2Vec技术实现了嵌入的单词。其次,通过使用自组织地图(SOM)和K-mean算法,集群嵌入数据的单词以提高分析和挖掘性能的目的。在此基础上,开发了无监督的APRiori学习算法来分析和挖掘数据中的这些关联规则。最后,进行了一些实验以验证我们的计划可以有效地挖掘矿床数据中的潜在关系和规则。

著录项

  • 来源
    《Intelligent automation and soft computing》 |2020年第5期|973-987|共15页
  • 作者单位

    Univ Sci & Technol Beijing Sch Comp & Commun Engn Beijing 100083 Peoples R China|Beijing Key Lab Knowledge Engn Mat Sci Beijing 100083 Peoples R China|Beijing Intelligent Logist Syst Collaborat Innova Beijing 101149 Peoples R China;

    Univ Sci & Technol Beijing Sch Comp & Commun Engn Beijing 100083 Peoples R China|Beijing Key Lab Knowledge Engn Mat Sci Beijing 100083 Peoples R China|Beijing Intelligent Logist Syst Collaborat Innova Beijing 101149 Peoples R China;

    China Geol Survey Dev & Res Ctr Beijing 100037 Peoples R China;

    Univ Sci & Technol Beijing Sch Comp & Commun Engn Beijing 100083 Peoples R China|Beijing Key Lab Knowledge Engn Mat Sci Beijing 100083 Peoples R China|Beijing Intelligent Logist Syst Collaborat Innova Beijing 101149 Peoples R China;

    Cleveland State Univ Dept Elect Engn & Comp Sci Cleveland OH 44115 USA;

    Univ Chile Dept Elect Engn Santiago 1058 Chile;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Association rules; Self-organizing Map (SOM); K-means; apriori;

    机译:关联规则;自组织地图(SOM);K-means;apriori;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号