首页> 外文OA文献 >Phishing website detection using intelligent data mining techniques. Design and development of an intelligent association classification mining fuzzy based scheme for phishing website detection with an emphasis on E-banking.
【2h】

Phishing website detection using intelligent data mining techniques. Design and development of an intelligent association classification mining fuzzy based scheme for phishing website detection with an emphasis on E-banking.

机译:使用智能数据挖掘技术的网络钓鱼网站检测。一种基于智能关联分类挖掘模糊的网络钓鱼网站检测方案的设计与开发,重点是电子银行。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Phishing techniques have not only grown in number, but also in sophistication. Phishers mightudhave a lot of approaches and tactics to conduct a well-designed phishing attack. The targets ofudthe phishing attacks, which are mainly on-line banking consumers and payment serviceudproviders, are facing substantial financial loss and lack of trust in Internet-based services. Inudorder to overcome these, there is an urgent need to find solutions to combat phishing attacks.udDetecting phishing website is a complex task which requires significant expert knowledge andudexperience. So far, various solutions have been proposed and developed to address theseudproblems. Most of these approaches are not able to make a decision dynamically on whether theudsite is in fact phished, giving rise to a large number of false positives. This is mainly due toudlimitation of the previously proposed approaches, for example depending only on fixed blackudand white listing database, missing of human intelligence and experts, poor scalability and theirudtimeliness.udIn this research we investigated and developed the application of an intelligent fuzzy-basedudclassification system for e-banking phishing website detection. The main aim of the proposedudsystem is to provide protection to users from phishers deception tricks, giving them the abilityudto detect the legitimacy of the websites. The proposed intelligent phishing detection systemudemployed Fuzzy Logic (FL) model with association classification mining algorithms. Theudapproach combined the capabilities of fuzzy reasoning in measuring imprecise and dynamicudphishing features, with the capability to classify the phishing fuzzy rules. Different phishing experiments which cover all phishing attacks, motivations and deceptionudbehaviour techniques have been conducted to cover all phishing concerns. A layered fuzzyudstructure has been constructed for all gathered and extracted phishing website features andudpatterns. These have been divided into 6 criteria and distributed to 3 layers, based on their attackudtype. To reduce human knowledge intervention, Different classification and associationudalgorithms have been implemented to generate fuzzy phishing rules automatically, to beudintegrated inside the fuzzy inference engine for the final phishing detection.udExperimental results demonstrated that the ability of the learning approach to identify alludrelevant fuzzy rules from the training data set. A comparative study and analysis showed thatudthe proposed learning approach has a higher degree of predictive and detective capability thanudexisting models. Experiments also showed significance of some important phishing criteria likeudURL & Domain Identity, Security & Encryption to the final phishing detection rate.udFinally, our proposed intelligent phishing website detection system was developed, tested andudvalidated by incorporating the scheme as a web based plug-ins phishing toolbar. The resultsudobtained are promising and showed that our intelligent fuzzy based classification detectionudsystem can provide an effective help for real-time phishing website detection. The toolbarudsuccessfully recognized and detected approximately 92% of the phishing websites selected fromudour test data set, avoiding many miss-classified websites and false phishing alarms.
机译:网络钓鱼技术不仅数量不断增加,而且技术也日趋成熟。网络钓鱼者可能拥有大量的方法和策略来进行精心设计的网络钓鱼攻击。网络钓鱼攻击的目标(主要是在线银行消费者和支付服务 udproviders)面临巨大的财务损失,并且对基于Internet的服务缺乏信任。为了克服这些问题,迫切需要找到解决网络钓鱼攻击的解决方案。检测网络钓鱼网站是一项复杂的任务,需要大量的专家知识和经验。到目前为止,已经提出并开发了各种解决方案来解决这些问题。这些方法中的大多数都不能动态地确定是否真的对非现场钓鱼进行了决策,从而导致大量误报。这主要是由于先前提出的方法的局限性,例如仅依赖于固定的黑白名单数据库,缺少人类智能和专家,可伸缩性及其及时性不足。 ud在本研究中,我们研究并开发了该应用程序基于模糊/智能分类的电子银行网络钓鱼网站检测系统的设计。所提议的 udsystem的主要目的是为用户提供保护,使其免受网络钓鱼者的欺骗手段的侵害,使他们能够检测网站的合法性。提出了基于关联分类挖掘算法的智能网络钓鱼检测系统模糊逻辑模型。 udappachach结合了模糊推理在测量不精确和动态 dphishing特征方面的功能,以及对网络钓鱼模糊规则进行分类的功能。已经进行了涵盖所有网络钓鱼攻击,动机和欺骗行为技术的各种网络钓鱼实验,以涵盖所有网络钓鱼问题。已针对所有收集和提取的网络钓鱼网站功能和 udpatterns构建了分层的模糊 ud结构。根据它们的攻击 udtype,它们已分为6个标准并分配到3层。为了减少人类的知识干预,已实施了不同的分类和关联算法,以自动生成模糊网络钓鱼规则,然后将其集成到模糊推理引擎中,以进行最终的网络钓鱼检测。 ud实验结果表明,这种学习方法能够识别来自训练数据集的所有不相关的模糊规则。一项比较研究和分析表明,与学习模型相比,所提出的学习方法具有更高的预测和侦查能力。实验还显示了一些重要的网络钓鱼准则,例如 udURL和域身份,安全性和加密对最终网络钓鱼检测率的重要性。 ud最后,我们通过将该方案作为网络进行了开发,测试和验证,提出了我们建议的智能网络钓鱼网站检测系统基于插件的网络钓鱼工具栏。结果获得令人鼓舞的结果,表明我们基于智能模糊的分类检测 ud系统可以为网络钓鱼网站的实时检测提供有效的帮助。工具栏成功识别并检测到了从 udour测试数据集中选择的大约92%的网络钓鱼网站,避免了许多误分类的网站和虚假的网络钓鱼警报。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号