首页> 外文期刊>Intelligent automation and soft computing >The Data Classification Query Optimization Method for the English Online Examination System based on the Grid Image Analysis
【24h】

The Data Classification Query Optimization Method for the English Online Examination System based on the Grid Image Analysis

机译:基于网格图像分析的英语在线检查系统的数据分类查询优化方法

获取原文
获取原文并翻译 | 示例

摘要

In the English network examination system, the big data distribution is highly coupled, the cost of data query is large, and the precision is not good. In order to improve the ability of the data classification and query in the English network examination system, a method of data classification and query in the English network examination system is proposed based on the grid region clustering and frequent itemset feature extraction of the association rules. Using the grid image analysis to improve the statistical analysis of the English performance analysis, the collection and storage structure analysis of the information resource data of the English network examination system is carried out, and the feature of the information flow of the English network examination system is extracted and the auto-correlation feature analysis of the running data of the English network examination system is carried out. The feature quantity of the frequent item sets of the association rules, which reflects the running state of the English network examination system is extracted. The feature quantity of the dosed frequent items of the extracted association rules is identified and classified by using the distributed clustering method of the grid region. In order to improve the target orientation of the data repository query in the English network examination system, the classification query of the data repository in the English network examination system is realized. The simulation results show that this method shows high precision and real-time performance in the English network examination system.
机译:在英语网络检查系统中,大数据分布高耦合,数据查询的成本很大,精度不好。为了提高英语网络检查系统中数据分类和查询的能力,提出了一种基于网格区域聚类和频繁项目集特征提取的英语网络检查系统中的数据分类和查询方法。使用电网图像分析来改善英语性能分析的统计分析,进行了英语网络检查系统信息资源数据的收集和存储结构分析,以及英语网络检查系统信息流的特征提取并执行英语网络检查系统的运行数据的自相关特征分析。提取了反映英语网络检查系统的运行状态的关联规则的频繁项目集的特征量。通过使用网格区域的分布式聚类方法来识别提取的关联规则的定时频繁项目的特征量。为了提高英语网络检查系统中数据存储库查询的目标方向,实现了英语网络检查系统中数据存储库的分类查询。仿真结果表明,该方法在英语网络检查系统中显示了高精度和实时性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号