首页> 外文期刊>Intelligent automation and soft computing >Research on the Automatic Extraction Method of Web Data Objects Based on Deep Learning
【24h】

Research on the Automatic Extraction Method of Web Data Objects Based on Deep Learning

机译:基于深度学习的Web数据对象自动提取方法研究

获取原文
获取原文并翻译 | 示例

摘要

This paper represents a neural network model for the Web page information extraction based on the depth learning technology, and implements the model algorithm using the TensorFbw system. We then complete a detailed experimental analysis of the information extraction effect of Web pages on the same website, then show statistics on the accuracy index of the page information extraction, and optimize some parameters in the model according to the experimental results. On the premise of achieving ideal experimental results, an algorithm for migrating the model to the same pages of other websites for information extraction is proposed, and the experimental results are analyzed. Although the overall effect of the experiment is not as good as that of the page information extraction in different websites, it is far more effective than that of using the model directly on new websites. A new method is proposed to improve the portability of the information extraction system based on machine leaming technology. At the same time, the deep nonlinear learning method of the depth learning model can prove deeper features, can have a more essential description of the abstract language, and can better express and understand sentences from the syntactic and semantic levels.
机译:本文代表了基于深度学习技术的网页信息提取的神经网络模型,并使用TensorFBW系统实现模型算法。然后,我们完成了对同一网站上网页信息提取效果的详细实验分析,然后显示了页面信息提取的准确性指数的统计数据,并根据实验结果优化模型中的一些参数。在实现理想实验结果的前提下,提出了一种将模型迁移到其他网站的相同页面进行信息提取的算法,分析了实验结果。虽然实验的整体效果并不像不同网站中的页面信息提取的整体效果,但它比在新网站上使用模型更有效。建议采用新方法来提高基于机器LEAMING技术的信息提取系统的可移植性。同时,深度学习模型的深度非线性学习方法可以证明更深入的功能,可以具有更强的抽象语言描述,并可以更好地表达和理解语法和语义层面的句子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号