首页> 外文期刊>Intelligent automation and soft computing >Personalized Nutrition Recommendation for Diabetic Patients Using Optimization Techniques
【24h】

Personalized Nutrition Recommendation for Diabetic Patients Using Optimization Techniques

机译:使用优化技术的糖尿病患者的个性化营养推荐

获取原文
获取原文并翻译 | 示例

摘要

Personalization in recommendation system has been emerging as the most predominant area in service computing. Collaborative filtering and content based approaches are two major techniques applied for recommendation. However, to improve the accuracy and enhance user satisfaction, optimization techniques such as Ant Colony and Particle Swarm Optimization were analyzed in this paper. For theoretical analysis, this paper investigates web page recommender system. For experimentation, Diabetic patient's health records were investigated and recommendatbn algorithms are applied to suggest appropriate nutrition for rnproving their health. Experiment result shows that Particle Swarm Optimization outperforms other traditional methods with improved performance and accuracy.
机译:推荐系统中的个性化已成为服务计算中最主要的区域。协作过滤和基于内容的方法是适用于推荐的两种主要技术。然而,为了提高准确性和增强用户满意度,本文分析了优化技术,如蚁群和粒子群优化。对于理论分析,本文调查了网页推荐系统。对于实验,研究了糖尿病患者的健康记录,并应用了ExpectAtbn算法,以表明其健康的适当营养。实验结果表明,粒子群优化优于其他具有改进性能和准确性的传统方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号