首页> 外文期刊>Intelligent automation and soft computing >A Novel Knowledge-Based Battery Drain Reducer for Smart Meters
【24h】

A Novel Knowledge-Based Battery Drain Reducer for Smart Meters

机译:一种新型的基于知识的智能电表电量减少器

获取原文
获取原文并翻译 | 示例

摘要

The issue of battery drainage in the gigantic smart meters network such as semantic-aware IoT-enabled smart meter has become a serious concern in the smart grid framework. The grid core migrates existing tabular datasets i.e., Relational data to semantic-aware tuples in its Resource Description Framework (RDF) format, for effective integration among multiple components to work aligned with IoT. For this purpose, WWW Consortium (W3C) recommends two specifications as mapping languages. However, both specifications use entire RDB schema to generate data transformation mapping patterns and results large quantity of unnecessary transformation. As a result, smart meters use huge computing resources, maximum energy capacity and come across battery drain problems. This paper proposes a novel semantic-aware battery drain optimization strategy 'SPARQL Auto R2RML Mapping (SARM)' that generates custom RDF patterns with precise metadata and avoids use of full schema along with optimized usage of network resources through (i) selective metadata migration, and (ii) optimal battery usage. The proposed approach effectively increases battery life with a balanced proportion of energy consumption and reduces meter load congestion which happens to be another vital reason of battery drain problem. The presented knowledge-based battery drain prevention strategy is evaluated over an RDB dataset using three types of SPARQL queries; Basic, Nested and Join. Furthermore, the R2RML processors evaluated SARM over the most recent Berlin SPARQL Benchmark datasets which depicts that SARM is efficient 40.4% in mapping generation time and 10.46% in average planning time than default RDB2RDF transformations. Finally, SARM significantly improves total execution time of RDB2RDF migration with an efficiency of 8.82% and conserves battery drain by 18.5% over the smart grid data cluster.
机译:巨大的智能电表网络中的电池耗电问题(例如启用了语义的IoT的智能电表)已经成为智能电网框架中的一个严重问题。网格核心将其资源描述框架(RDF)格式中的现有表格数据集(即关系数据)迁移到语义感知的元组,以实现多个组件之间的有效集成以与IoT保持一致。为此,WWW联盟(W3C)建议使用两种规范作为映射语言。但是,两个规范都使用整个RDB模式来生成数据转换映射模式,并导致大量不必要的转换。结果,智能电表会消耗大量的计算资源,最大的能量容量并会遇到电池耗电问题。本文提出了一种新颖的语义感知电池消耗优化策略“ SPARQL自动R2RML映射(SARM)”,该策略可生成具有精确元数据的自定义RDF模式,并通过(i)选择性元数据迁移避免使用完整模式以及网络资源的优化使用, (ii)最佳电池使用量。所提出的方法有效地延长了电池寿命,同时消耗了一定比例的能量,并减少了电表负载的拥塞,而这恰恰是电池耗电问题的另一个重要原因。使用三种类型的SPARQL查询在RDB数据集上评估了基于知识的电池电量消耗预防策略。基本,嵌套和联接。此外,R2RML处理器在最新的Berlin SPARQL Benchmark数据集上评估了SARM,这表明SARM比默认的RDB2RDF转换在映射生成时间和平均计划时间方面的效率高40.4%,在平均计划时间中的效率达10.46%。最后,SARM显着缩短了RDB2RDF迁移的总执行时间,效率为8.82%,与智能电网数据集群相比,电池消耗节省了18.5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号