首页> 外文期刊>Intelligent automation and soft computing >State-Space based Linear Modeling for Human Activity Recognition in Smart Space
【24h】

State-Space based Linear Modeling for Human Activity Recognition in Smart Space

机译:基于状态空间的线性模型在智能空间中进行人类活动识别

获取原文
获取原文并翻译 | 示例

摘要

Recognition of human activity is a key element for building intelligent and pervasive environments. Inhabitants interact with several objects and devices while performing any activity. Interactive objects and devices convey information that can be essential factors for activity recognition. Using embedded sensors with devices or objects, it is possible to get object-use sequencing data. This approach does not create discomfort to the user than wearable sensors and has no impact or issue in terms of user privacy than image sensors. In this paper, we propose a linear model for activity recognition based on the state-space method. The activities and sensor data are considered as states and inputs respectively for linear modeling. The relationship between the states and inputs are defined by a coefficient matrix. This model is flexible in terms of control because all the elements are represented by matrix elements. Three real datasets are used to compare the recognition accuracy of the proposed method to those of other well-known activity recognition model to validate the proposed model. The results indicate that the proposed model achieves a significantly better recognition performance than other models.
机译:对人类活动的认可是构建智能和普遍环境的关键要素。居民在执行任何活动时会与多个对象和设备进行交互。交互式对象和设备传达的信息可能是活动识别的重要因素。通过将嵌入式传感器与设备或对象一起使用,可以获得对象使用的排序数据。这种方法不会比可穿戴传感器给用户带来不适,并且比图像传感器在用户隐私方面没有影响或问题。在本文中,我们提出了一种基于状态空间方法的活动识别线性模型。活动和传感器数据分别视为线性建模的状态和输入。状态和输入之间的关系由系数矩阵定义。该模型在控制方面非常灵活,因为所有元素均由矩阵元素表示。使用三个真实的数据集将所提方法的识别准确度与其他知名活动识别模型的识别准确度进行比较,以验证所提模型的有效性。结果表明,提出的模型比其他模型具有明显更好的识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号