首页> 外文期刊>Intelligent automation and soft computing >The Design and Implementation of a Multidimensional and Hierarchical Web Anomaly Detection System
【24h】

The Design and Implementation of a Multidimensional and Hierarchical Web Anomaly Detection System

机译:多维层次网络异常检测系统的设计与实现

获取原文
获取原文并翻译 | 示例

摘要

The traditional web anomaly detection systems face the challenges derived from the constantly evolving of the web malicious attacks, which therefore result in high false positive rate, poor adaptability, easy over-fitting, and high time complexity. Due to these limitations, we need a new anomaly detection system to satisfy the requirements of enterprise-level anomaly detection. There are lots of anomaly detection systems designed for different application domains. However, as for web anomaly detection, it has to describe the network accessing behaviours characters from as many dimensions as possible to improve the performance. In this paper we design and implement a Multidimensional and Hierarchical Web Anomaly Detection System (MHWADS) with the objectives to provide high performance, low latency, multi-dimension and adaptability. MHWADS calculates the statistical characteristics, and constructs the corresponding statistical model, detects the behaviour characteristics to generate the multidimensional correlation eigenvectors, and adopts several classifications to build an ensemble model. The system performance is evaluated based on realistic dataset, and the experimental results show that MHWADS yields substantial improvements than the previous single model. More important, by using 2-fold Stacking as the ensemble architecture, the detection precision and recall are 0.99988 and 0.99647, respectively.
机译:传统的Web异常检测系统面临着不断增长的Web恶意攻击带来的挑战,因此导致假阳性率高,适应性差,容易过度拟合以及时间复杂度高。由于这些限制,我们需要一种新的异常检测系统来满足企业级异常检测的要求。有许多针对不同应用领域设计的异常检测系统。但是,对于Web异常检测,它必须从尽可能多的维度描述网络访问行为特征,以提高性能。在本文中,我们设计并实现了多维层次的Web异常检测系统(MHWADS),目的是提供高性能,低延迟,多维和适应性。 MHWADS计算统计特征,并构建相应的统计模型,检测行为特征以生成多维相关特征向量,并采用几种分类方法建立集成模型。系统性能基于现实的数据集进行了评估,实验结果表明,MHWADS与以前的单个模型相比有实质性的改进。更重要的是,通过使用2倍堆叠作为整体体系结构,检测精度和召回率分别为0.99988和0.99647。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号