首页> 外文期刊>Integration >RF calibration of on-chip DfT chain by DC stimuli and statistical multivariate regression technique
【24h】

RF calibration of on-chip DfT chain by DC stimuli and statistical multivariate regression technique

机译:DC刺激和统计多元回归技术对片上DfT链进行RF校准

获取原文
获取原文并翻译 | 示例

摘要

The problem of parameter variability in RF and analog circuits is escalating with CMOS scaling. Consequently every RF chip produced in nano-meter CMOS technologies needs to be tested. On-chip Design for Testability (DfT) features, which are meant to reduce test time and cost also suffer from parameter variability. Therefore, RF calibration of all on-chip test structures is mandatory. In this paper, Artificial Neural Networks (ANN) are employed as a multivariate regression technique to architect a RF calibration scheme for DfT chain using DC- instead of RF (GHz) stimuli. The use of DC stimuli relaxes the package design and on-chip routing that results in test cost reduction. A DfT circuit (RF detector, Test-ADC, Test-DAC and multiplexers) designed in 65 nm CMOS is used to demonstrate the proposed calibration scheme. The simulation results show that the cumulative variation in a DfT circuit due to process and mismatch can be estimated and successfully calibrated, i.e. 25% error due to process variation in Dff circuit can be reduced to 2.5% provided the input test stimuli is large in magnitude. This reduction in error makes parametric tests feasible to classify the bad and good dies especially before expensive RF packaging. (C) 2014 Elsevier B.V. All rights reserved.
机译:射频和模拟电路中的参数可变性问题随着CMOS缩放比例的增加而逐步升级。因此,需要对使用纳米CMOS技术生产的每个RF芯片进行测试。旨在减少测试时间和成本的片上可测性设计(DfT)功能也存在参数可变性的问题。因此,必须对所有片上测试结构进行RF校准。在本文中,人工神经网络(ANN)被用作多元回归技术,以DC-代替RF(GHz)刺激来构建DfT链的RF校准方案。 DC刺激的使用可简化封装设计和片上布线,从而降低测试成本。以65 nm CMOS设计的DfT电路(RF检测器,Test-ADC,Test-DAC和多路复用器)用于演示所提出的校准方案。仿真结果表明,可以估计并成功校准DfT电路中由于工艺和失配引起的累积变化,即,如果输入测试激励的幅度较大,则Dff电路中由于工艺变化引起的25%的误差可以降低至2.5%。 。误差的减少使参数测试成为可能,可以对不良和不良晶片进行分类,尤其是在昂贵的RF封装之前。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号