首页> 外文期刊>Integral Equations and Operator Theory >Closed-Range Composition Operators on mathbbA2{mathbb{A}^2} and the Bloch Space
【24h】

Closed-Range Composition Operators on mathbbA2{mathbb{A}^2} and the Bloch Space

机译:mathbbA 2 {mathbb {A} ^ 2}和Bloch空间上的封闭范围合成运算符

获取原文
获取原文并翻译 | 示例

摘要

For any analytic self-map j{varphi} of {z : |z| < 1} we give four separate conditions, each of which is necessary and sufficient for the composition operator Cj{C_{varphi}} to be closed-range on the Bloch space B{mathcal{B}} . Among these conditions are some that appear in the literature, where we provide new proofs. We further show that if Cj{C_{varphi}} is closed-range on the Bergman space mathbbA2{mathbb{A}^2} , then it is closed-range on B{mathcal{B}} , but that the converse of this fails with a vengeance. Our analysis involves an extension of the Julia-Carathéodory Theorem.
机译:对于{z:| z |的任何解析自映射j {varphi} <1}我们给出四个单独的条件,每个条件对于组合运算符C j {C_ {varphi}}在Bloch空间B {mathcal {B}上的封闭范围是必要的和充分的}。这些条件中有一些出现在文献中,我们提供了新的证据。我们进一步证明,如果C j {C_ {varphi}}在Bergman空间mathbbA 2 {mathbb {A} ^ 2}上是封闭范围的,则它是封闭的在B {mathcal {B}}上-range,但与此相反的是,由于复仇而失败。我们的分析涉及Julia-Carathéodory定理的扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号