首页> 外文期刊>Integral Equations and Operator Theory >Norms and Essential Norms of the Singular Integral Operator with Cauchy Kernel on Weighted Lebesgue Spaces
【24h】

Norms and Essential Norms of the Singular Integral Operator with Cauchy Kernel on Weighted Lebesgue Spaces

机译:加权Lebesgue空间上具有Cauchy核的奇异积分算子的范数和本质范数。

获取原文
获取原文并翻译 | 示例

摘要

Let α and β be bounded measurable functions on the unit circle , and let L 2(W) be a weighted L 2 space on . The singular integral operator S α,β is defined by where P is an analytic projection and Q = I − P is a co-analytic projection. In the previous paper, the essential norm of S α,β are calculated in the case when W is a constant function. In this paper, the essential norm of S α,β are estimated in the case when W is an A 2-weight.
机译:设α和β为单位圆上的可测量函数,设L 2 (W)为上的加权L 2 空间。奇异积分算子S α,β由定义,其中P是解析投影,而Q = I-P是协解析投影。在上一篇文章中,当W是一个常数函数时,计算S α,β的基本范数。在本文中,当W为A 2 权重时,估计S α,β的基本范数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号