首页> 外文期刊>Integral Equations and Operator Theory >Second Order Elliptic Differential-Operator Equations with Unbounded Operator Boundary Conditions in UMD Banach Spaces
【24h】

Second Order Elliptic Differential-Operator Equations with Unbounded Operator Boundary Conditions in UMD Banach Spaces

机译:UMD Banach空间中具有无界算子边界条件的二阶椭圆型微分-算子方程

获取原文
获取原文并翻译 | 示例

摘要

In a UMD Banach space E, we consider a boundary value problem for a second order elliptic differential-operator equation with a spectral parameter when one of the boundary conditions, in the principal part, contains a linear unbounded operator in E. A theorem on an isomorphism is proved and an appropriate estimate of the solution with respect to the space variable and the spectral parameter is obtained. In this way, Fredholm property of the problem is shown. Moreover, discreteness of the spectrum and completeness of a system of root functions corresponding to the homogeneous problem are established. Finally, applications of obtained abstract results to nonlocal boundary value problems for elliptic differential equations with a parameter in non-smooth domains are given.
机译:在UMD Banach空间E中,当其中一个边界条件的主要部分在E中包含线性无界算子时,我们考虑具有频谱参数的二阶椭圆微分算子方程的边值问题。证明了同构,并获得了关于空间变量和光谱参数的解的适当估计。这样,就显示了问题的Fredholm属性。此外,建立了光谱的离散性和对应于齐次问题的根函数系统的完整性。最后,将获得的抽象结果应用于具有非光滑域参数的椭圆型微分方程的非局部边值问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号