首页> 外文期刊>Integral Equations and Operator Theory >Eigenvalue Asymptotics for the Non-Selfadjoint Operator Induced by a Parameter-Elliptic Multi-Order Boundary Problem
【24h】

Eigenvalue Asymptotics for the Non-Selfadjoint Operator Induced by a Parameter-Elliptic Multi-Order Boundary Problem

机译:参数椭圆多阶边界问题引起的非自伴算子的特征值渐近性

获取原文
获取原文并翻译 | 示例

摘要

In this paper we consider a boundary problem for a parameter-elliptic, multi-order system of differential equations defined over a bounded region in ${mathbb{R}^n}$ and under Dirichlet boundary conditions. In addition, the problem is considered under limited smoothness assumptions. Information is then derived concerning the asymptotic behaviour of the eigenvalues of the Hilbert space operator, in general non-selfadjoint, induced by the boundary problem under null boundary conditions.
机译:在本文中,我们考虑了在$ {mathbb {R} ^ n} $的有界区域上和Dirichlet边界条件下定义的参数椭圆多阶微分方程组的边界问题。另外,在有限的平滑度假设下考虑了该问题。然后,得出有关零边界条件下边界问题引起的希尔伯特空间算子(通常是非自伴)的特征值的渐近行为的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号