首页> 外文期刊>Integral Equations and Operator Theory >Shape Derivatives of Boundary Integral Operators in Electromagnetic Scattering. Part I: Shape Differentiability of Pseudo-homogeneous Boundary Integral Operators
【24h】

Shape Derivatives of Boundary Integral Operators in Electromagnetic Scattering. Part I: Shape Differentiability of Pseudo-homogeneous Boundary Integral Operators

机译:电磁散射中边界积分算子的形状导数。第一部分:伪齐次边界积分算子的形状可微性

获取原文
获取原文并翻译 | 示例

摘要

In this paper we study the shape differentiability properties of a class of boundary integral operators and of potentials with weakly singular pseudo-homogeneous kernels acting between classical Sobolev spaces, with respect to smooth deformations of the boundary. We prove that the boundary integral operators are infinitely differentiable without loss of regularity. The potential operators are infinitely shape differentiable away from the boundary, whereas their derivatives lose regularity near the boundary. We study the shape differentiability of surface differential operators. The shape differentiability properties of the usual strongly singular or hypersingular boundary integral operators of interest in acoustic, elastodynamic or electromagnetic potential theory can then be established by expressing them in terms of integral operators with weakly singular kernels and of surface differential operators.
机译:在本文中,我们研究了一类边界积分算子的形状微分性质,以及关于经典Sobolev空间之间作用的具有弱奇异伪均质核的势的形状微分性质。我们证明边界积分算子是无限可微的而不会损失规则性。可能的算子远离边界无限地可微化,而它们的导数在边界附近失去规则性。我们研究了表面微分算子的形状可微性。然后,可以通过用弱奇异核的积分算子和表面微分算子来表达它们,来建立在声学,弹性力学或电磁势理论中感兴趣的通常的强奇异或超奇异边界积分算子的形状可微性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号