首页> 外文期刊>Instrumentation and Measurement, IEEE Transactions on >Ensemble-Kalman-Filter-Based Power System Harmonic Estimation
【24h】

Ensemble-Kalman-Filter-Based Power System Harmonic Estimation

机译:基于集成卡尔曼滤波的电力系统谐波估计

获取原文
获取原文并翻译 | 示例

摘要

The growing use of power-electronics-based components and nonlinear loads is increasing the presence of harmonics in power system signals. In this scenario, proper estimation of such harmonics is intended to maintain power quality and improved operation of the system. It is also desirable that the estimation technique should be computationally efficient while being accurate. From this viewpoint, this paper proposes a nonlinear state estimation technique based on ensemble Kalman filtering for estimation of harmonics, interharmonics, and subharmonics, all using a single framework and at a time, from distorted power system signal. The proposed technique is computationally efficient compared to conventional Kalman filtering leading to less computational cost and hardware requirement. It is observed from both simulation and experimental studies that the proposed ensemble Kalman filter (KF) approach to estimation of harmonics, interharmonics, and subharmonics in a distorted power system signal exhibits superior estimation performance in terms of tracking time and accuracy as compared to performances of some of the existing techniques such as recursive least square, recursive least mean square, and KF algorithms. The proposed technique is also found to be robust and gives accurate estimates even in the presence of amplitude variations in the measured signal.
机译:基于电力电子技术的组件和非线性负载的使用日益增多,这增加了电力系统信号中谐波的存在。在这种情况下,对此类谐波的正确估计旨在保持电源质量并改善系统的运行。还希望估算技术在准确的同时应具有计算效率。从这个角度出发,本文提出了一种基于整体卡尔曼滤波的非线性状态估计技术,用于从失真的电力系统信号中一次使用单个框架来估计谐波,间谐波和次谐波。与传统的卡尔曼滤波相比,所提出的技术在计算上是有效的,从而导致更少的计算成本和硬件需求。从仿真和实验研究中都可以观察到,所提出的集成卡尔曼滤波器(KF)方法估计失真的电力系统信号中的谐波,间谐波和次谐波,与跟踪系统的性能相比,在跟踪时间和精度方面均表现出优异的估计性能。一些现有技术,例如递归最小二乘,递归最小均方和KF算法。还发现,所提出的技术是鲁棒的,并且即使在被测信号中存在幅度变化时也能给出准确的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号